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Abstract

Video-based representations have gained promi-
nence in planning and decision-making due to
their ability to encode rich spatiotemporal dy-
namics and geometric relationships. These rep-
resentations enable flexible and generalizable so-
lutions for complex tasks such as object manip-
ulation and navigation. However, existing video
planning frameworks often struggle to adapt to
failures at interaction time due to the incapabil-
ity to reason about uncertainties in partially ob-
served environments. To overcome these limita-
tions, we introduce a novel framework that in-
tegrates interaction-time data into the planning
process. Our approach updates model parame-
ters online and filters out previously failed plans
during generation. This enables implicit state es-
timation, allowing the system to adapt dynami-
cally without explicitly modeling unknown state
variables. We evaluate our framework through
extensive experiments on a new simulated ma-
nipulation benchmark, demonstrating its ability
to improve replanning performance and advance
the field of video-based decision-making.

1. Introduction

Learning from videos has gained significant traction in
decision-making, as videos capture rich visual and dy-
namic information while aligning with how humans ac-
quire knowledge. These properties make them a power-
ful medium for specifying tasks and learning diverse skills
across contexts. Recent work has shown the effectiveness
of video-based frameworks in enabling robots to learn be-
haviors such as object manipulation (Li et al., 2024) and
navigation (Zhang et al., 2024), highlighting the value of
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video as a flexible and expressive representation.

This paper focuses on video as a planning representation.
Given a goal and current observation, video planning sys-
tems generate imagined task executions and convert them
into robot actions. Unlike symbolic or latent representa-
tions, videos naturally encode both perceptual and action
information and generalize across tasks and environments.
Prior works (Chang et al., 2020; Du et al., 2024a;b) lever-
age these properties to train universal agents using video-
based predictions.

Despite promising results, existing video planning frame-
works suffer from a crucial limitation: they lack mecha-
nisms to integrate past interactions with the environment
and cannot effectively reason about uncertainty due to par-
tial observability. Consider the task of opening a door
without knowing whether it should be pushed or pulled.
If pushing fails, a human will naturally infer that pulling
is the correct action and adjust accordingly. In contrast,
current video planning frameworks simply generate a new
plan, disregarding the knowledge gained from prior at-
tempts. This inability to incorporate feedback from interac-
tions significantly limits their effectiveness, particularly in
unstructured environments where uncertainty is inherent.

A common solution introduces explicit belief models
trained in simulation to infer hidden parameters (Memmel
et al., 2024; Qi et al., 2023). Yet these methods require
prior knowledge of relevant parameters and may struggle
when interaction data fails to disambiguate uncertainties.
In contrast, humans can effectively resolve these challenges
by drawing on past experiences and employing adaptive
trial-and-error strategies when prior knowledge is lacking.
In the context of video planning, failed interactions are not
merely setbacks — they offer critical information about the
environment and system parameters.

Our goal is to develop a video planning framework that
effectively encodes and retrieves interaction data, adapt-
ing plans dynamically based on past experiences—without
requiring additional simulation data or prior knowledge
of the parameters. We propose a novel problem formu-
lation that formalizes the challenge of generating video
plans while implicitly incorporating past interactions, as
illustrated in Figure 1. To address this, we introduce im-
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Figure 1. Implicit state estimation via video replanning. Previ-
ous video planning methods rely on the first frame (in red). We
propose to incorporate past failures (in blue) to improve future

plans.

plicit state estimation (ISE), a framework that integrates
interaction-time data into the planning process without ex-
plicitly defined system parameters. Instead of relying on
hand-specified beliefs, our approach enables rapid adapta-
tion by optimizing a subset of model parameters that im-
plicitly encode unobservable state features. ISE also incor-
porates a plan-rejection mechanism that filters out previ-
ously failed plans, preventing over-reliance on incorrect in-
ferences and encouraging exploration. By adopting a video
planning framework, our approach leverages the latest ad-
vancements in generative models, paving the way for future
applications such as out-of-distribution detection.

To validate the effectiveness of our framework, we intro-
duce the Meta-World System Identification Benchmark,
a new dataset designed to evaluate online adaptation in
decision-making across diverse robotic tasks with unknown
system parameters. Experiments show that our method al-
lows for rapid adaptation without explicit system identi-
fication. Compared to baselines, including RL methods
and other methods for video planning, our approach sig-
nificantly reduces replanning failures and generates more
accurate video plans in dynamic, uncertain environments.

2. Related Works

Video planning. Videos have emerged as a popular
medium for planning in the physical world. (Yang et al.,
2024b). For planning actions, people have explored using
video to train dynamics model (Yang et al., 2024a; Ajay
et al., 2023; Zhou et al., 2024; Qin et al., 2024) or re-
ward model (Ma et al., 2023; Chen et al., 2021a; Escon-
trela et al., 2023). Another popular approach involves di-
rectly predicting video sequence (Du et al., 2024a; Ko et al.,
2024; Black et al., 2024) or derived representations such as
3D-correspondence or point tracks (Yuan et al., 2024; Wen
et al., 2024; Bharadhwaj et al., 2025) to guide downstream
policy. However, most of these frameworks do not con-
sider environmental uncertainty, which limits their ability

to efficiently adapt and replan, often resulting in subopti-
mal performance in such environments.

System identification. System identification focuses on
learning system dynamics and estimating parameters us-
ing experimental data, with early work on input selection
and the Fisher Information Matrix (Schon et al., 2011;
Ljung, 1998; Menda et al., 2020). This research laid the
groundwork for active identification strategies, which aim
to maximize the amount of information gained from sys-
tem inputs, a key element in classical system identifica-
tion (Hjalmarsson et al., 1996; Lindqvist & Hjalmarsson,
2001; Gerencser & Hjalmarsson, 2005). Recent advances
in the field have applied these methods to real-world sys-
tems, such as identifying physical parameters (Xu et al.,
2019; Kumar et al., 2019; Mavrakis et al., 2020; Gao et al.,
2020; 2022; Memmel et al., 2024). Our work can be seen as
bridging classical system identification and modern video
planning method by injecting the ability to implicitly infer
physical parameters from past video data to the model.

Imitation learning. Imitation learning (Zare et al., 2024)
is a research field of robot learning. Literally, imitation
learning means that the objective is to train an agent to
behave like an expert, given the dataset of the interaction
of the export and the environment. Imitation learning has
been proven to be an effective and data-efficient approach
for robot learning (Ho & Ermon, 2016; Wang et al., 2017).
Behavioral cloning (BC; (Torabi et al., 2018)) formulates
imitating an expert as a supervised learning problem and
achieves success on various tasks (Florence et al., 2021;
Chen et al., 2024; Shridhar et al., 2022; Chi et al., 2024;
Brohan et al., 2023). Imitation learning uses expert demon-
stration, while we aim to leverage failed interactions with
environments.

Offline reinforcement learning. Offline RL as-
sumes datasets composed of state-action-reward se-
quences (Levine et al., 2020; Figueiredo Prudencio et al.,
2024). In contrast to online RL, during the stage of
training, the agent tries to learn to perform the task by
leveraging the dataset, without any interaction to the
environment. The paradigm of offline RL has existed for
dacades. However, with the rise of deep learning, most
modern offline RL algorithms utilize deep neural networks
to express the value functions and policies (Kidambi et al.,
2020; Yu et al., 2020; Kumar et al., 2020b; Yu et al., 2021;
Yang et al., 2022). In addition, with the development
of large language model and transformer, there are also
some research about using transformer for reinforcement
learning (Chen et al., 2021b; Furuta et al.,, 2022). In
contrast to offline RL, our framework do not assume dense
reward signals.
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3. Problem Formulation

We consider a setting where certain system parameters 6,
such as mass, friction, or utility — essential for solving
the task — are unknown. Unlike existing work for explicit
state estimation, we do not assume access to the parame-
terization of . We only assume that the underlying 6 can
be inferred from interaction data. For example, in a bar-
pushing task, the center of mass can be implicitly inferred
from an interaction video, regardless of whether the push is
successful.

We aim to design a system capable of rapidly solving
tasks by planning efficiently and leveraging interactions in
the environment. For each environment, we assume ac-
cess to an experience dataset D, consisting of data tuples
d; = (vi,04,8;) € D, where v; represents an interaction
video, o; denotes the object ID, and s; is a binary success
indicator. The dataset contains both successful interactions
where s; = 1 and failed interactions where s; = 0. Our
work focuses on evaluating whether the selected plans can
guide successful action sequences. We complement our fo-
cus on plan evaluation by using a fixed action prediction
module to convert videos into actions for execution.

4. Approach

We tackle manipulation tasks in environments with un-
known hidden parameters (e.g., mass or friction) by lever-
aging prior interaction videos. Our framework incremen-
tally refines its belief about the environment through trial-
and-error and video-based planning. Given the current
scene and past interactions, it retrieves and refines a latent
state embedding representing a hypothesis of the hidden
parameters, then generates a video plan based on this em-
bedding (Figure 2).

The system maintains two buffers: failed interactions and
failed plans. At each round, it generates candidate plans
and selects one that differs most from past failures using
a rejection strategy (Section 4.2). This plan is converted
into actions using an Action Module, which may be based
on inverse dynamics, goal-conditioned policies, or trajec-
tory tracking. We use AVDC'’s training-free point tracking
method (Ko et al., 2024). Failed attempts are added to the
buffers, guiding future updates to the state belief and plan
selection.

Our framework consists of three components: (1) a Video
Plan Generator conditioned on the scene and state embed-
ding, (2) a Rejection Module that promotes diverse plan-
ning, and (3) an Action Module that translates videos into
actions. Detailed descriptions are provided in Sections 4.1,
4.2, and 4.3.

4.1. Video plan generator and retrieval module

To generate meaningful plans in environments with un-
known dynamics, our system first hypothesizes the hid-
den parameters of the environment via the retrieval and
refinement of a latent state embedding, which serves as a
proxy for the current environment configuration. We first
discuss our Video Plan Generator and Retrieval Module,
which generate candidate plans based on observed images
and state embeddings. The Video Plan Generator predicts
future frames conditioned on the current observation and,
when available, the state embedding. For new objects with-
out prior interactions, the generator operates solely on the
observed image by conditioning on a learned “null” state
embedding.

The Retrieval Module extracts state embeddings from prior
interactions by encoding past videos and selecting a repre-
sentative embedding for each object ID. At inference time,
it encodes the current interaction video, computes distances
to past embeddings from dataset D, and uses a softmax
function to sample the most relevant state embedding. In
addition, we use an additional identification model to con-
tinuously refine the selected state embedding to best fit cur-
rent interaction videos.

4.1.1. STATE EMBEDDING

To represent the hidden system parameters, we encode in-
teraction videos from previous action executions with the
same object using a context encoder E. The video embed-
ding for each video v; is obtained as e = F(v;). In the
dataset D, multiple data tuples may share the same object
ID o0;. Naively encoding each video independently would
result in multiple, different embeddings for the same ob-
ject. To address this, we preprocess the dataset by grouping
all entries with the same object ID and selecting the encod-
ing from one of the successful executions (where s; = 1) to
represent the object, resulting in a state embedding e7. We
assume that success is monotonic — all successful videos
are similar and, therefore, yield similar embeddings.

4.1.2. VIDEO PLAN GENERATOR

The Video Plan Generator is used to generate a video con-
taining M future frames conditioned on the current obser-
vation and a state embedding. We follow the implementa-
tion of AVDC'’s video planner, which is a first-frame condi-
tioned video diffusion model utilizing a 3D U-Net architec-
ture. The original implementation conditions on task fea-
tures were obtained from encoding natural language task
descriptions with text encoders such as CLIP-Text, rather
than state embeddings. To adapt the method to our needs,
we project the state embedding into the hidden dimension
of the language features and treat the projected embedding
as an additional language token. The parameters of the pro-
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Figure 2. Framework overview. (a) Generate and select plans The Video Plan Generator first generates a set of candidate video plans
conditioned on first-frame f; and state embedding e. The Rejection Module then selects the plan that is least similar to the plans in the
Failed Plan Buffer Bp. (b) Execute plan and update buffers. The Action Module interacts with the environment by following the
selected plan vP*. If the interaction trial is not successful, we update the Failed Plan Buffer Bp and the Failed Interaction Buffer Bj.
(c) Update belief. The state embedding e is updated using the Retrieval Module based on the Failed Interaction Buffer B;. Then, we
generate the next batch of video plans according to the updated belief.

jection layer are trained end-to-end along with the video
planner, which is optimized using a standard denoising dif-
fusion loss. For all experiments in this paper, we choose the
resolution of generated frames to be 128x128 and M = 7.
Each time we invoke the Video Plan Generator, M = 7 fu-
ture frames are generated, we then concatenate them with
the first frame, resulting in a M + 1 = § frames video plan.
For training details, please refer to Appendix C.1.

4.1.3. RETRIEVAL MODULE

During inference, the Video Plan Generator needs to take
in a state embedding extracted from prior interactions. To
ensure that the method is general across different encoders
E, we first normalize and align the dimensionality of the
feature space constructed by video features e by applying
PCA to all extracted video features e, yielding a PCA pro-
jection P and PCA-transformed features e;” = P(e?) and

e’ = P(e9).

Given the interaction video from a prior execution, v°¢, we
first encode it using the encoder E and apply the PCA

transformation, resulting in e®? = P(E(v®)). We then
compute the distance between e°? and the video encodings
from D as logits; = —dist; = —K (e, e;"), where K

represents the distance function. For the choice of K, we
used Cosine Distance for CLIP and DINO-based methods
and L2 Distance for other methods. After calculating the
logits, we compute the sampling probability of each output
embedding by passing the logits through a softmax func-
tion: p; = softmax(logits;/T), where T is the tempera-
ture parameter. Finally, we sample the output state embed-
ding e = ¢ according to the resulting probability distribu-
tion k ~ Categorical(p1, p2, . . ., pn). While such retrieval-
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Figure 3. Video Plan Generator and Identification Module.
We implement the Video Plan Generator and the Identification
Module as two video generative models with shared parameters,
switched with a binary trigger is_planning. The Video Plan
Generator is trained with only successful videos from the ex-
perience dataset D, while the Identification Module is trained
with all videos from D, including the failures, enabling the state-
embedding refining process.

based state estimation formulation necessitates the data be-
ing available during test time, it enables training-free state
estimation and guarantees that the Video Plan Generator
never accepts out-of-distribution state embeddings during
inference time.

4.1.4. REFINING STATE EMBEDDING

In addition to using retrieval to find a relevant state em-
bedding for a video, we also use an optimization-based
approach to find a refined state embedding correspond-
ing to a specific interaction video. Specifically, we intro-
duce another generative model, referred to as the Identifi-
cation model or the ID module, trained with the parameters
shared with the Video Plan Generator, as shown in Figure 3.
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The ID module is trained to generate all possible interac-
tion outcomes, including both successful and unsuccessful
ones. During replanning, we freeze its parameter and only
optimize the state embedding to maximize the probability
of generating the given interaction video.

e = argmin M SE(v®,v)

Here, e is the optimized state embedding, v® is the interac-
tion video, and v is the videos sampled from the ID module
conditioned on e.

Since the ID module and the Video Plan Generator share
the same embedding space for state embeddings, the op-
timized state embedding can be used directly to generate
video plans. In the experimental section of the paper, we
analyze the effect of this refinement procedure for state es-
timation when 1) this approach optimizes state embedding
from randomly initialized vectors drawn from unit vari-
ance Gaussian distribution, 2) the state embedding is set
to the output of the Retrieval Module, and 3) these two ap-
proaches are combined, where this approach optimizes the
output of the Retrieval Module.

4.1.5. LATENT FEATURE SPACE

Given the experience dataset D, context encoder E de-
cides the feature space that the Retrieval Module and the
Video Plan Generator operate on. To implement F, we ex-
periment with taking pre-trained vision encoders that are
known to give good semantic representations, such as CLIP
(Radford et al., 2021) and DINOv2 (Oquab et al., 2024).
To encode videos with these image encoders, we used a
simple strategy that first encodes each frame independently
and then concatenates the per-frame features, resulting in a
single-vector video feature.

4.2. Rejection module

While the modules introduced in Section 4.1 alone are suf-
ficient to perform system identification essential for solv-
ing the tasks given a set of videos of interactions in the en-
vironment, the identified system parameters are often not
perfect. This is especially the case when we only have a
limited number of interactions with the environment. Thus,
to effectively estimate the precise state of the environment,
it is important that the system repeatedly actively interacts
with the environment.

To actively interact with the environment, we use a video
plan generator to generate plans for execution. To en-
courage the planner to explore novel plans and avoid be-
ing overly reliant on suboptimal beliefs, we employed a
simple rejection-based sampling method. In the Rejec-
tion Module, the previously failed plans are stored in a
data buffer. At each planning round, we generate N plans

(v}, 08, ..., vk, instead of one by conditioning the Video
Plan Generator on N independently sampled state em-
beddings from the Retrieval Module, yielding N different
plans with potentially different beliefs on environment pa-
rameter 6. Let F be the set of previously failed plans stored
in the data buffer, we first calculate the distance to the near-
est failed plan for each plan P;:

d(vy,
where K is the distance function. Empirically, we found

that L2 distance on raw pixel space works surprisingly well
already.

We then select the plan vP* whose distance to its nearest
failed plan is the largest (out of a set of generated video
plans):

vP* = argmax d(v}, F)

i

The selected vP* is later converted to low-level control sig-
nals through the Action Module.

The combination of Section 4.1 and Section 4.2 form the
core of our Implicit State Estimation procedure. Interac-
tions with the environment through the rejection module in
Section 4.2 obtain a buffer of interaction videos that help
describe the implicit state of the environment. The retrieval
module in Section 4.1 then obtains an explicit latent that
represents the implicit state of the environment.

4.3. Action module

Given a generated video plan, to convert the video into
continuous actions to execute, we follow the concept of
dense object-tracking from AVDC to recover actions from
video plans. On certain interaction tasks, the object of in-
terest is not applicable. For example, in a bar-picking task
where the robot is required to grasp around the center of
mass to succeed, knowing the future trajectory of the bar is
not sufficient to decide the grasp location. In these tasks,
we track the robot’s wrist instead. After obtaining the ob-
ject/robot wrist trajectory from the tracking results, we con-
vert the trajectory into actions using hand-crafted heuristic
policies.

5. Experiment
5.1. Meta-World system identification benchmark

To evaluate the performance of different methods for online
adaptation in decision-making, we propose the Meta-World
System Identification Benchmark, which contains an of-
fline experience dataset paired with environments each ex-
hibiting unknown system parameter #. The benchmark in-
cludes tasks like manipulating objects (e.g., push bar, pick
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Table 1. Meta-World System Identification Benchmark. Each
task involves interaction-based inference of system parameters 6,
which are either continuous or discrete with varying mode counts.

Task Identification Type
Push Bar Continuous
Pick Bar Continuous
Slide Brick Continuous
Open Box Discrete, 2 modes

Turn Faucet Discrete, 2 modes

bar) and solving puzzles (e.g., turn faucet), where the un-
derlying environmental rules must be identified from the
interactions. Table 1 shows the set of 5 tasks. They eval-
uate a robot’s ability to manipulate objects with varying
physical properties and constraints, requiring adaptability
to dynamic conditions such as randomized centers of mass,
uncertain interaction modes, and external forces.

Push bar. The objective of this task is to push a bar to-
ward a designated target with the center of mass of the bar
randomized.

Pick bar. This task requires the robot to grasp a bar and
transport it to a specified target. Similarly, the center of
mass of the bar is randomly assigned.

Slide brick. This task consists of two distinct stages. In
the first stage, the robot must push a brick up an inclined
surface. In the second stage, the brick slides freely down
the slope. The objective is to control the initial push such
that the brick comes to rest within a predefined target region
on the slope.

Open box. The objective of this task is to open a box. The
box cover can be manipulated in one of two modes: it can
either be lifted or slid open.

Turn faucet. In this task, the robot must rotate a faucet.
The faucet’s direction of rotation is either clockwise or
counterclockwise.

In the above five tasks, the system parameters cannot be in-
ferred without physical interaction. The details of the tasks
are provided in Appendix B.

5.2. Evaluation metrics

Our study focuses on two key aspects. First, we hypothe-
size that our replanning mechanism can reduce the number
of replans required for successful execution. To quantita-
tively measure the rate of adaptation, we report the aver-
age number of replans needed per successful attempt in our
main experiment. Specifically, the agent must repeatedly
replan until it either succeeds or reaches a predefined max-
imum number of replan trials, M. For all tasks, we set
M = 14.

Second, instead of only evaluating task success, we also

assess the effectiveness of the replanning mechanism by
comparing the replanned videos to groundtruth interaction
videos. To quantify this similarity, we use standard video
comparison metrics: PSNR, SSIM, and LPIPS (Zhang
etal., 2018).

5.3. Implementation details and baselines

We evaluate our framework on the 5 tasks in the Meta-
World System Identification Benchmark. For our model,
the Video Plan Generator is trained on the videos in the of-
fline experience dataset as described in 4.1.2. Each task
is evaluated over 400 trials. We compare our approach
with the original AVDC implementation for video planning
which does not online adapt, variants of our method that
use different context encoders F, and other reinforcement
learning baselines.

* AVDC is the baseline with only the Action Module,
i.e., without the Retrieval Module and Rejection Mod-
ule introduced in this paper.

* QOurs is our proposed method with E based on DI-
NOV2 feature as described in 4.1.5.

* Ours (Refine) is a variant of our method with refining
state embeddings from scratch as mentioned in 4.1.4.

Our problem formulation for state estimation can be
viewed as a single-step multi-task reinforcement learning
(RL) problem, where the success signal s; from the dataset
serves as the reward, by additionally assuming privileged
access to action labels (i.e., ground-truth system param-
eters). We also implement such explicit state estimation
baselines with popular RL algorithms to calibrate the diffi-
culty of the tasks.

* BC uses a state embedding-conditioned behavior
cloning framework where the Policy takes in state and
state embedding directly. The state embedding is ob-
tained with E based on DINOv2.

e CQL (Kumar et al., 2020a) is a state embedding-
conditioned actor-critic framework. The Q-function
takes in state, action, and state embedding, while the
Policy takes in state and state embedding, which is ob-
tained with E based on DINOv?2.

5.4. Results

The replanning efficiency of all methods is presented in
Table 2. Our method and its variants consistently outper-
form baselines in video planning (AVDC), imitation learn-
ing (BC), and offline RL (CQL). AVDC performs better
than BC and CQL in terms of trial efficiency, demonstrating
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Figure 4. Qualitative results of adapted video plans. We show qualitative examples of adaptation trials for each task in the Meta-World
Identification Benchmark to illustrate the effectiveness of the proposed method. The framework generates new plans based on previously

failed interaction and video plans.

Table 2. Number of replans until success. Video planning methods, AVDC and ours, outperform baselines in imitation learning (BC)
and offline RL (CQL) on most tasks. Our method and its variant consistently outperform the video planning baseline. The error terms
show the standard error of the mean value. The reported error terms represent the standard error of the mean across 400 trials. For the
CQL baseline, performance is averaged over three independently initialized and trained policies for more robust evaluation.

Method Push Bar Pick Bar Slide Brick  Open Box  Turn Faucet All (Normalized)
CQL 9.96+0.20 9.224+0.19 894+0.18 3.324+0.18 5.63 £0.21 2.56=£ 0.10
BC 10.264+0.30  8.794+0.32  9.244+0.33  1.59+£0.19  3.544+0.27 1.98+ 0.05
AVDC 6.83+0.27 4414022 7.36+0.27 1.82+0.16 1.67+0.16 1.314+0.04
Ours (Refine)  4.66+0.23 3.87+0.21 6.72+0.26 1.73£0.16 1.54+0.15 1.12+0.03
Ours 426+ 020 3.84+0.18 6.69+026 1.25+0.10 1.39+£0.14 1.00 £+ 0.03

the benefits of video-based planning. BC and CQL struggle
significantly on these tasks and often fail to complete them,
frequently repeating similar predictions—suggesting over-
fitting or limited flexibility. Overall, our approach achieves
the strongest performance, showing its broad applicability
across both discrete and continuous parameter settings.

Our variants. Among the variations of our method, using
the Rejection Module (Ours) alone to generate state embed-
dings achieves the best overall performance. In contrast,
the refinement process introduced in Section 4.1.4 alone,
Ours (Refine+FS), yields similar or slightly worse perfor-
mance but does not assume data availability at test time,
i.e., do not require access to the dataset used to train the
diffusion model. Additionally, its formulation as a learned
model offers the potential for improved generalization. Fi-
nally, we show qualitative results for adaptations in Fig-
ure 4.

Video plan evaluation. In Table 3, we report the evalua-
tions of video plans generated by the baseline (AVDC) and
our methods with various context encoders FE, including
R3M (Nair et al., 2022), CLIP (Radford et al., 2021), and
DINOV2 (Oquab et al., 2024). Our method produces sig-

Table 3. Evaluation on replanned videos. We quantitatively as-
sess the accuracy of the generated video by measuring the simi-
larity between the framework’s output plan and the ground-truth
plan produced by the GT scripted policy.

Method PSNR{ SSIM{ LPIPS |
AVDC - 19426 0700 0271
Ours (R3M) 19.632 0704  0.261
Ours (CLIP) 19.584 0703 0262
Ours (DINOv2) 19.817  0.708  0.255

nificantly higher-quality videos compared to AVDC. Our
method with DINOv2 outperforms its counterpart using
R3M or CLIP, validating our design choices.

5.5. Ablation studies

Rejection and retrieval modules. To investigate the ef-
fectiveness of the Rejection and Retrieval Modules, we
compare AVDC (Action Module only), AVDC+Rejection,
AVDC+Retrieval, and our method (with both Rejection
and Retrieval). The result in Figure 5 shows the nor-
malized numbers of replans across all the tasks and
individual task performance is shown in Appendix C.
Both AVDC+Rejection and AVDC+Retrieval outperform
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Figure 5. Rejection and retrieval modules.
Both the Rejection and Retrieval Modules im-
prove the performance from AVDC (Aciton
Module only) and combining them (ours) yields
the best performance. In this figure, the numbers
of replans are normalized aggregated among the

five tasks. tasks.

AVDC, justifying the effectiveness of the Rejection and Re-
trieval modules. Our full method (with both the Rejection
and Retrieval modules) achieves the best performance, val-
idating the combinations.

Rejection module distance metric. We compare pixel-
wise distance and DINOv2-based similarity for selecting
video plan candidates, as described in Section 4.2. Fig-
ure 6 shows that pixel-wise distance performs better, likely
because DINOV2 struggles to distinguish these plans due
to the nature of its pretraining data.

Number of generated video plans. To study how the
number of video plans generated to be rejected affects the
performance, we vary the number from 1 to 5 and show
the result in Figure 7. The result aggregates the perfor-
mance across all the tasks, and individual task performance
is shown in Appendix C. From n = 1 (AVDC+Retrieval) to
n = 2 (ours), around 10% of replans are saved. However,
from n = 2 to n = 5, the numbers of replans until success
are near the same. An increase in video plan candidates
generated by the video generator results in an increase in
the computational cost. Therefore, since the performances
of n € {2,3,4,5} are comparable, we set n = 2.

5.6. Evaluation on real world data

To demonstrate the method’s ability to plan efficiently, we
evaluated the video-planning framework on a real-world
door-opening task. The door can be either pushed or pulled
open, which can’t be distinguished from the appearance
and must be revealed through interaction. The setup is
shown in Figure 8.

We collected 20 real-world videos (10 successes, 10 fail-
ures) to train the video model. We address the challenge of

Figure 6. Rejection module distance.
We compare using raw-pixel distance
and DINOvV2 embedding distance to re-
ject and the former yields better perfor-
mance. The numbers of replans are nor-
malized and aggregated among the five

Figure 7. Number of generated video
plans. We experiment with generating
different numbers of video plans n €
[1,5] and set n = 2. In this figure, the
numbers of replans are normalized and
aggregated among the five tasks.

Figure 8. Real-world setup. A WidowX arm attempts to open a
door that can either be pulled or pushed open.

training on such a small dataset by adopting a joint train-
ing with simulation data: 40% of samples came from real-
world data and 60% from the Meta-World System Identifi-
cation Benchmark. To reduce overfitting to the first frames,
which often leads to monotonic plans, we injected Gaus-
sian noise into the first-frames during inference. Further-
more, we set n = 4 to promote diverse plan generation.

For simplicity, we evaluate the single-episode replanning
success rate, conditioned on an initial failure—different
from the main evaluation metric. A perfect random pol-
icy, which assumes knowledge of the correct modes (e.g.,
push or pull) but does not use past interaction, would suc-
ceed with 50% probability. Our method achieved 15/20
successes, compared to 8/20 for a naive video planner with-
out using past information, demonstrating the effectiveness
of our pipeline. Full results and qualitative examples are in
Appendix C.6.
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6. Conclusion

Our framework enhances video-based decision-making by
adapting to interaction-time uncertainties. Integrating real-
time data enables implicit state estimation and effective re-
planning. Experiments on a simulated manipulation bench-
mark validate its ability to filter failed plans and update
models online. Experimental results demonstrate improved
robustness in uncertain environments, and ablation studies
justify our design choices.

Impact Statements

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Appendix
A. Supplementary materials

A.1. Website and Code

We present extensive qualitative results and release our code in our website.

B. Benchmark Details of Simulator Tasks

Push Bar Pick Bar Slide Brick Open Box Turn Faucet

Figure 9. Settings of five task environments.
The environments of the five tasks are shown in Figure 9.

B.1. Push Bar

The objective of this task is to push a bar towards the target. Physically, the bar is combined with a mass point and a
mass-free bar. Therefore, if the robot does not push the bar exact at the center of mass, torque is imposed on the bar,
resulting in the deflection of the bar.

The bar has a length of 0.4 meters. In the pretraining stage the video generation model, the distances between the center of
mass and geometric center of the bar are shown in Table 4.

Table 4. Center of mass positions. The distances between the center of mass and the geometric center of the bar in the pretraining stage
of the video generation model. The sign represents the direction.

-0.18 -0.165 -0.15 -0.135 -0.12
-0.105  -0.09 -0.075 -0.06 -0.05
-0.03  -0.015 0.0 0.015 0.03
0.045 0.06  0.075 0.09  0.105
0.12  0.135 0.15 0.18

The visualization of this task is shown in Figure 10.

B.2. Pick Bar

The objective of this task is to grasp a bar towards the target. Physically, like push-bar mentioned above, the bar is combined
with a mass point and a mass-free bar. Therefore, if the robot does not grasp the bar exact at the center of the mass, torque
is imposed on the bar, resulting in the tilt of the bar.

The properties of the bar in this task are the same as the bar in push-bar. And the distances between the center of mass and
geometric center of the bar in the pretraining stage are also the same as above.

The visualization of this task is shown in Figure 11.

B.3. Slide Brick

There are two stages in this task. In the first stage, the robot pushes a brick up an inclined surface. In the second stage, the
brick slides freely down the slope. The objective is to push the brick at a proper height so that the brick can slide down and
stop at the gray band.
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Note that the wooden slope has a relatively low friction coefficient and that the red slope has a relatively high friction
coefficient. Therefore, the brick can slide down and accelerate in the wooden slope and decelerate in the red slope. The
friction coefficient of the wooden slope is fixed and is set to 0, while the friction coefficient of the red slope is various, and
those in the pretraining stage are shown in Table 5.

The visualization of this task is shown in Figure 12.

Table 5. Friction coefficients. The friction coefficients of the red slope in the pretraining stage of the video generation model.

024 025 026 027 028 03 032
034 035 036 038 039 04

B.4. Open Box

The objective of this task is to open a box whose lid operates in one of two possible ways: it either needs to be lifted or slid
open. The specific mode is chosen at random and cannot be identified visually, so the robot must physically interact with
the box and adjust its strategy based on the observed response.

The visualization of the task is shown in Figure 13.

B.5. Turn Faucet

The objective of this task is to rotate a faucet. The direction of rotation—clockwise or counterclockwise—is randomly
assigned and cannot be determined in advance through observation. The robot must interact with the faucet to identify the
correct direction and execute the appropriate motion.

The visualization of the task is shown in Figure 14.

C. Additional Experiment Details
C.1. Video diffusion model

Our video diffusion model adopts a U-Net architecture following (Ko et al., 2024). The original implementation conditions
on the first frame and the task name tokens, where the task tokens are encoded using CLIP-Text, to predict future frames.
Building on this framework, we additionally condition the video generation process on past interaction videos. Specifically,
we encode the past interaction video as described in Section 4.1.5, and concatenate the resulting embedding with the
encoded task tokens after projecting it to match the CLIP-Text output dimensionality (512 channels) using a trainable
linear layer.

To improve computational efficiency, the video diffusion model generates a low-resolution video plan through the denoising
process. This low-resolution plan is then upsampled to the target resolution using a separate super-resolution model that
predicts residuals over the upsampled frames. The diffusion model is trained using the v-parameterization approach with a
learning rate of le-4. Key hyperparameters for the video diffusion model are summarized in Table 6.

Table 6. Hyperparameters. Comparison of configuration parameters for the Meta-World benchmark.

num_parameters 125M
diffusion_resolution (32, 32)
target_resolution (128, 128)
base_channels 128
num_res_block 2
attention_resolutions 2,4,8)
channel_mult (1,2,3,4)
batch_size 128
training_timesteps 12k
denoising_timestep 100
sampling_timestep 25
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C.2. Rejection and retrieval modules

Tables 7 and 8 show the per-task performance for the experiment in Figure 5.

Table 7. Number of replans until success.

Method Push Bar Pick Bar  Slide Brick Open Box Turn Faucet All (Normalized)
AVDC 6.83+£ 027 4.41+£0.22 7.36+£027 1.82+0.16 1.67£0.16 1.30£ 0.4
AVDC+Rejetion  6.21£0.25 3.77£0.19 7.16£0.26 1.62+0.15 1.52+0.15 1.184+0.03
AVDC+Retrieval 4.914+0.22 4.1£020 6.86+0.25 1.3840.13 1.60£0.14 1.10+ 0.03
Ours 4.26+0.20 3.84+0.18 6.69+0.26 1.25+0.10 1.39+0.14 1.00+ 0.03

Table 8. Evaluation for video replan videos

Method PSNR1 SSIM1 LPIPS|

AVDC 19.426 0.700 0.271
AVDC+Rejection  19.459 0.700 0.265
AVDC+Retrieval 19.521 0.703 0.264
Ours 19.817 0.708 0.255

C.3. Rejection module distance

Tables 9 and 10 show the per-task performance for the experiment in Figure 6.

Table 9. Number of Replans until Success.

Distance Metric  Push Bar Pick Bar  Slide Brick Open Box Turn Faucet All (Normalized)

Raw-Pixel (ours) 4.26+ 0.20 3.83+0.18 6.69£0.26 1.25+0.10 1.39+0.14 1.00+ 0.03
DINOv2 4.83+0.22 4.08£0.20 6.62+0.26 1.27+0.11 1.47£0.14 1.05+ 0.03

Table 10. Evaluation for video replan videos

Method PSNR*T SSIM1{ LPIPS|
Raw-Pixel (ours) 19.817 0.708 0.255
DINOv2 19.787 0.708 0.256

C.4. Number of generated video plans

Tables 11 and 12 show the per-task performance for the experiment in Figure 7.

Table 11. Number of replans until success.
n Push Bar Pick Bar  Slide Brick Open Box Turn Faucet
491+£0.22 4.1+£020 6.86+0.25 1.38+0.13 1.60+ 0.14

1

2 426+0.20 3.83+0.18 6.69+0.26 1.254+0.10 1.39+ 0.14
=3 4.18+0.19 3.63+0.18 7.23+0.26 1.13£0.10 1.36+0.13

4

5

4.19£020 347+£0.18 691+0.24 1.22+0.11 1.53£0.15
4.15+0.19 3.60£0.19 7.24+0.26 1.22+0.11 1.33+0.13
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Table 12. Evaluation for video replan videos

n  PSNRT SSIMt LPIPS |

1 19.459 0.700 0.271
n=2  19.817 0.708 0.255
n=3 19.723 0.706 0.258
n= 19.617 0.703 0.262
n=5 19483 0.700 0.266

C.S5. Runtime analysis

We measured the average computation time over 100 iterations on a machine with an Intel Xeon W-2255 CPU and an
NVIDIA RTX 3080 Ti GPU. Each iteration includes embedding retrieval, video generation (DDIM), plan selection (reject),
and action decoding via optical flow. As shown in Table 13, planning takes only a few seconds per episode, making our
framework practical for real-time interaction.

Table 13. Computation time (in seconds) averaged over 100 trials.

Component AVDC Ours Ours + Refine
Retrieve N/A 0.487 +£0.008 11.876 £ 0.036
DDIM 0.777 £0.001 1.573 £0.004 1.599 + 0.006
Reject N/A 1.276 £ 0.075  1.230 + 0.068
Optical Flow  1.564 £ 0.021 1.661 £0.030 1.761 £ 0.028
Total 2341 £0.021 4.997 £0.081 16.466 + 0.082

C.6. Real-world experiment

Table 14. Real-World results. AVDC represents naive video planning frameworks without our proposed replanning and rejection
strategies. OQurs shows the performance of our full video generation pipeline.

Method  Success Rate

AVDC 8/20
Ours 15/20

Figure 16 shows the qualitative rollout for our real-world experiment. We followed most of the hyperparameters as used
in the Meta-World System Identification Benchmark. Additionally, we changed n = 4 and injected Gaussian noise of
standard deviation 0.35 into first-frames with pixel values normalized to [0, 1] to mitigate the first-frame bias issue.

D. Limitation

To isolate the challenge of video-based belief refinement, our work assumes a reliable action module, attributing failures
solely to planning errors. While this abstraction simplifies evaluation, it omits real-world execution noise, which future
work could address through uncertainty-aware control. Our visually driven approach enables interpretability but struggles
with visually ambiguous tasks (e.g., subtle directional differences); incorporating tactile or proprioceptive sensing could
improve disambiguation. We also observe a “first-frame bias” in the video generator under low-data regimes, where plans
become overly deterministic. Although we have shown in Section 5.6 that such bias can be mitigated via increasing the
number of candidate plans n and noise injection to the first-frame image, future methods may benefit from diversity-
promoting strategies or explicit mode learning.
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Figure 10. Push Bar. The above video shows a failed trial, because the deflection of the bar is too large so that the bar cannot reach the
target.

Figure 11. Pick Bar. The above video shows a failed trial, because the bar fell down.

Figure 12. Slide Brick. The above video shows a failed trial, because the brick didn’t slide down to the gray band.

Figure 13. Open Box. The above video shows a failed trial, becuase the robot try to grasp the handle up. However, the right way to open
the box is to push the handle horizontally.
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(a) First frame

(b) Initial Plan

(c) Interaction

(d) New Plan

Figure 16. Real-world qualitative results. Given the first frame (a), the robot first attempts to push the door (b). Then, it gets stuck and
fails to open the door (b). Finally, it generates a plan that pushes the door instead (c) by leveraging information from previous failure.
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