
LEARNING TO ACT FROM ACTIONLESS VIDEOS
THROUGH DENSE CORRESPONDENCES

Po-Chen Ko†
National Taiwan University

Jiayuan Mao
MIT CSAIL

Yilun Du
MIT CSAIL

Shao-Hua Sun
National Taiwan University

Joshua B. Tenenbaum
MIT BCS, CBMM, CSAIL

ABSTRACT

In this work, we present an approach to construct a video-based robot policy ca-
pable of reliably executing diverse tasks across different robots and environments
from few video demonstrations without using any action annotations. Our method
leverages images as a task-agnostic representation, encoding both the state and
action information, and text as a general representation for specifying robot goals.
By synthesizing videos that “hallucinate” robot executing actions and in combi-
nation with dense correspondences between frames, our approach can infer the
closed-formed action to execute to an environment without the need of any explicit
action labels. This unique capability allows us to train the policy solely based on
RGB videos and deploy learned policies to various robotic tasks. We demonstrate
the efficacy of our approach in learning policies on table-top manipulation and
navigation tasks. Additionally, we contribute an open-source framework for effi-
cient video modeling, enabling the training of high-fidelity policy models with four
GPUs within a single day.

1 INTRODUCTION

A goal of robot learning is to construct a policy that can successfully and robustly execute diverse
tasks across various robots and environments. A major obstacle is the diversity present in different
robotic tasks. The state representation necessary to fold a cloth differs substantially from the one
needed for pouring water, picking and placing objects, or navigating, requiring a policy that can
process each state representation that arises. Furthermore, the action representation to execute each
task varies significantly subject to differences in motor actuation, gripper shape, and task goals,
requiring a policy that can correctly deduce an action to execute across different robots and tasks.

One approach to solve this issue is to use images as a task-agnostic method for encoding both the
states and the actions to execute. In this setting, policy prediction involves synthesizing a video that
depicts the actions a robot should execute (Finn & Levine, 2017; Kurutach et al., 2018; Du et al.,
2023), enabling different states and actions to be encoded in a modality-agnostic manner. However,
directly predicting an image representation a robot should execute does not explicitly encode the
required robot actions to execute. To address this, past works either learn an action-specific video
prediction model (Finn & Levine, 2017) or a task-specific inverse-dynamics model to predict actions
from videos (Du et al., 2023). Both approaches rely on task-specific action labels which can be
expensive to collect in practice, preventing general policy prediction across different robot tasks.

This work presents a method that first synthesizes a video rendering the desired task execution;
then, it directly regresses actions from the synthesized video without requiring any action labels or
task-specific inverse-dynamics model, enabling us to directly formulate policy learning as a video
generation problem. Our key insight is that action inference from video in many robotics tasks can be
formulated as solving for a rigid 3D transform of objects or points in the generated video. Such a
transform can be robustly inferred using off-the-shelf optical flow and segmentation networks, and
actions can then be executed from these transforms using off-the-shelf inverse kinematics and motion
planners. We illustrate the efficacy of our method across various robotics tasks ranging from table-top
assembly, ego-centric object navigation, and real-world robot manipulation in Figure 1.

†Work done while Po-Chen Ko is a visiting student at MIT. Project page: https://flow-diffusion.github.io/

1

https://flow-diffusion.github.io/

Assembly

Find
toaster

Put the peach
into the bowl

Figure 1: Diverse Task Execution without Action Labels. Our approach can execute policies given only
synthesized video, without any action labels, across various manipulation, navigation, and real-world tasks.

Another limitation of existing approaches that formulate policy prediction as a video prediction
problem is that they suffer from high computational costs during training, requiring the use of over
256 TPU pods (Du et al., 2023), with limited availability of the underlying source code. As a
contribution, we provide an open-source codebase for training video policy models. Through a series
of architectural optimizations, our framework enables the generation of high-fidelity videos for policy
execution, with training accomplished on just 4 GPUs in a single day.

Concretely, this work contributes the following: (1) We propose a method to infer actions from video
prediction without the need of any action labels by leveraging dense correspondences in a video.
(2) We illustrate how this approach enables us to learn policies that can solve diverse tasks across
both table-top manipulation and navigation. (3) We present an open-source framework which enables
efficient video modeling that enables us to learn policies efficiently on 4 GPUs in a single day.

2 RELATED WORK

Robot Learning from Videos. A large body of work has explored how to leverage videos for robot
learning (Sun et al., 2018; Pari et al., 2022; Nair et al., 2022; Shao et al., 2021; Chen et al., 2021; Bahl
et al., 2022; Sharma et al., 2019; Lee & Ryoo, 2017; Du et al., 2023; Chethan et al., 2023; Karamcheti
et al., 2023). One approach relies upon using existing video datasets to construct effective visual
representations (Pari et al., 2022; Nair et al., 2022; Karamcheti et al., 2023). Alternatively, goal or
subtask information for robotic execution may be extracted for videos (Shao et al., 2021; Chen et al.,
2021; Chethan et al., 2023; Bahl et al., 2022; Sharma et al., 2019; Lee & Ryoo, 2017; Sivakumar et al.,
2022) or used as a dynamics model for planning (Finn & Levine, 2017; Kurutach et al., 2018). The
absence of rewards and action labels also distinguishes AVDC from offline RL (Levine et al., 2020).
Most similar to our work, in UniPi (Du et al., 2023), policy prediction may directly be formulated
as a text-conditioned video generation problem. Our approach extends UniPi and illustrates how
dense correspondences enable action inference without any explicit action labels. Another work
with a similar high-level idea to ours (Bharadhwaj et al., 2023) predicts hand poses from videos
and uses them directly for control, while we infer actions from object-centric trajectories. While
hand poses contain more details of manipulator-object interactions, object-centric actions may help
cross-embodiment transfer.

Leveraging Dense Correspondences. Dense correspondences have emerged as an effective implicit
parameterization of actions and poses (Florence et al., 2018; Manuelli et al., 2022; Yen-Chen et al.,
2022; Simeonov et al., 2022; 2023; Chun et al., 2023; Sundaresan et al., 2020; Ryu et al., 2023).
Given dense correspondences in 2D (Florence et al., 2018; Manuelli et al., 2022; Sundaresan et al.,
2020; Yen-Chen et al., 2022) of 3D (Simeonov et al., 2022; 2023; Chun et al., 2023; Ryu et al.,
2023) both object and manipulator poses may be inferred by solving for rigid transforms given
correspondences. Our approach uses dense correspondences between adjacent frames of synthesized
videos to calculate object of scene transformations and then infer robot actions.

Learning from Observation. In contrast to imitation learning (i.e., learning from demonstration) Osa
et al. (2018); Kipf et al. (2019); Ding et al. (2019); Fang et al. (2019); Wang et al. (2023), which
assumes access to expert actions, learning from observation methods (Torabi et al., 2019b; 2018;
2019a; Lee et al., 2021; Karnan et al., 2022) learn from expert state sequences (e.g., video frames).
Action-free pre-training methods (Baker et al., 2022; Escontrela et al., 2023) extract knowledge from

2

Step 1
img1 img2 img3 img4img0 (input)

Synthesized
Video

Step 2

Object Pose
& Robot Command

Step 3
(Flow + Depth)

q1 q2 q3 q4

(a) Input

St
at

e
D

ep
th

Pick up the
blue bowlG

oa
l (b)

(d)

: Video Pred.

: Flow Est.

: SE(3) Est.
Computed

Optical Flowflow1 flow2 flow3 flow4
(c)

Figure 2: Overall framework of AVDC. (a) Our model takes the RGBD observation of the current environmental
state and a textual goal description as its input. (b) It first synthesizes a video of imagined execution of the
task using a diffusion model. (c) Next, it estimates the optical flow between adjacent frames in the video. (d)
Finally, it leverages the optical flow as dense correspondences between frames and the depth of the first frame to
compute SE(3) transformations of the target object, and subsequently, robot arm commands.

unlabeled videos and learn target tasks through RL. extcolorblackFor example, a recent approach
involves learning value functions by pre-training on existing video datasets (Chethan et al., 2023).
Despite encouraging results, these methods require interacting with environments, which may be
expensive or even impossible. In contrast, our proposed method does not require environmental
interactions and therefore is more applicable.

3 ACTIONS FROM VIDEO DENSE CORRESPONDENCES
The architecture of our proposed framework, Actions from Video Dense Correspondences (AVDC),
is depicted in Figure 2. AVDC consists of three modules. Given the initial observation (i.e., an RGBD
image of the scene and a textual task description), we first employ a video synthesis model to generate
a video that implicitly captures the sequence of required actions (Section 3.1). Then, we use a flow
prediction model to estimate the optical flow of the scene and objects from the synthesized video
(Section 3.2). Finally, leveraging the initial depth map and predicted optical flows, we reconstruct the
movements of objects for manipulation or robots for navigation, described in Section 3.3.
3.1 TEXT-CONDITIONED VIDEO GENERATION

Our text-conditioned video generation model is a conditional diffusion model. The diffusion model
takes the initial frame and a text description as its condition and learns to model the distribution of
possible future frames. Throughout this paper, our video generation model predicts a fixed number of
future frames (T = 8 in our experiments).

The diffusion model aims to approximate the distribution p(img1:T |img0, txt), where img1:T repre-
sents the video frames from time step 1 to T , img0 denotes the initial frame, and txt represents the
task description. We train a denoising function ϵθ that predicts the noise applied to img1:T given the
perturbed frames. Given the Gaussian noise scheduling βt, our overall objective is,

LMSE =
∥∥∥ϵ− ϵθ

(√
1− βtimg1:T +

√
βtϵ, t | txt)

)∥∥∥2 ,
where ϵ is sampled from a multivariate standard Gaussian distribution, and t is a randomly sampled
diffusion step t. A main practical challenge with training such video diffusion models is that they are
usually computationally expensive. For example, the closest work to us, UniPi (Du et al. (2023)),
requires over 256 TPU pods to train. In this paper, we build a high-fidelity video generation model
that can be trained on 4 GPUs in a single day through a series of architectural optimizations. Section G
presents complexity analyses and how the process can be significantly accelerated.

Our model is a modified version of the image diffusion model proposed by Dhariwal & Nichol (2021),
built upon U-Net (Ronneberger et al., 2015), as illustrated in Figure 3a. The U-Net consists of the
same number of downsample blocks and upsample blocks. To enhance consistency with the initial
frame, we concatenate the input condition frame img0 to all future frames img1:T . To encode the text,
we use a CLIP-Text (Radford et al., 2021) encoder to obtain a vector embedding and combine it into
the video generative model as additional inputs to individual downsampling and upsampling blocks.

Importantly, we use a factorized spatial-temporal convolution similar to the model from Ho et al.
(2022), within each ResNet block (He et al., 2016). As shown in Figure 3b, in our approach, the
5D input feature map with shape (B,H,W, T,C), where B is the batch size, H and W represent
the spatial dimensions, T is the number of time frames, and C denotes the number of channels,
undergoes two consecutive convolution operations. First, we apply a spatial convolution identically
and independently to each time step t = 1, 2, · · · , T . Then, we employ a temporal convolution layer
identically and independently at each spatial location. This factorized spatial-temporal convolution

3

Res.
Block

Res.
Block

......

Res.
Block

Res.
Block

H×𝑾×T×(𝟐×3) H×𝑾×T×𝟑
Input frames: clean initial frame &
T-1 noisy subsequent frames

Goal (text)
Pick up the blue bowl CLIP

Output: denoised video

(a) U-Net architecture for our base diffusion model

𝐵×𝐻×𝑊×𝑇×𝐶

(𝐵×𝑇)×𝐻×𝑊×𝐶

(𝐵×𝐻×𝑊)×𝑇×𝐶

𝐵×𝐻×𝑊×𝑇×𝐶

Conv 2D
(Spatial)

Reshape

Conv 1D
(Temporal)

(b) Factorized spatial-temporal ResNet block

Figure 3: Network architecture of our video diffusion model. (a) We use an U-Net architecture follow-
ing Dhariwal & Nichol (2021) but extending it to videos. (b) We use a factorized spatial-temporal convolution
kernel Sun et al. (2015) as the basic building block. Dashed lines in both figures represent residual connec-
tions (He et al., 2016).

replaces conventional 3D convolution methods, leading to significant improvements in training and
inference efficiency without sacrificing generation quality. More details on the model architecture
and training can be found in Section F.

3.2 FLOW PREDICTION

To regress actions from predicted videos, we leverage flow prediction as an intermediate representation.
We employ off-the-shelf GMFlow, a transformer architecture specifically designed for optical flow
prediction (Xu et al., 2022). Given two consecutive frames imgi and imgi+1 predicted by the video
diffusion model, GMFlow predicts the optical flow between two images as a vector field on the image,
which is essentially a pixel-level dense correspondence map between two frames. This allows us to
track the movement of each input pixel with a simple integration of this vector field over time.

Alternatively, one could train diffusion models to directly predict the flow by first preprocessing
training videos with the flow prediction model. However, in our experiments, we encountered
challenges in optimizing such models and observed that they failed to match the performance
achieved by the two-stage inference pipeline. We conjecture that this difficulty arises from the lack
of spatial and temporal smoothness in flow fields. For instance, the flow field is sparse when only a
single object moves. Consequently, the Gaussian diffusion model may not be the optimal model for
flow distributions. We empirically compare two alternatives in subsequent experiments.

3.3 ACTION REGRESSION FROM FLOWS AND DEPTHS

Based on the predicted flow, which essentially gives us a dense prediction of pixel movements, we
can reconstruct object movements and robot movements in the video. Our key insight is to, given
the 3D information (depth) of the input frame and dense pixel tracking, reconstruct a sequence of
3D rigid transformations for each object. In this work, we explore two different settings: predicting
object transformations assuming a fixed camera (fixed-camera object manipulation) and predicting
camera (robot) movement assuming a static scene (visual navigation).

Predict object-centric motion. We first consider predicting 3D object motions in videos assuming
a fixed camera. We represent each object as a set of 3D points {xi}. The points corresponding to
the object of interest will be extracted by external segmentation methods, such as a pretrained image
segmentation model, or simply specified by the human. Given the camera intrinsic matrix and the
input RGBD image, we can compute the initial 3D positions of these points. Let Tt denote the rigid
body transformation of the object at time step t relative to the initial frame. We can express the
projection of a 3D point onto the image plane at time step t as KTtx = (ut, vt, dt), where K is the
camera intrinsic matrix. Furthermore, the projected 2D point on frame t is thus (ut/dt, vt/dt).

The optical flow tracking provides us with the projection of the same point in frame t, specifically
ut/dt and vt/dt. By tracking all points in {xi}, we can find the optimal transformation Tt that
minimizes the following L2 loss:

LTrans =
∑

i

∥∥∥ui
t −

(KTtxi)1
(KTtxi)3

∥∥∥2
2
+
∥∥∥vit − (KTtxi)2

(KTtxi)3

∥∥∥2
2
,

4

where (ui
t, v

i
t) is the corresponding pixel of point xi in frame t, and (KTtxi)i denotes the i-th entry

of the vector. It’s worth noting that even if we do not directly observe dt, this loss function remains
well-formed based on the assumption that Tt represents a rigid body transformation.

During execution, we first extract the mask of the object to manipulate and use the dense correspon-
dences in predicted videos to compute the sequence of rigid body transformations for the object.
Next, given inferred object transformations, we can use existing off-the-shelf robotics primitives to
generalizably infer actions in the environment. In particular, if the object is graspable, we randomly
sample a grasp on the object and then compute the target robot end-effector pose based on the target
object pose and the grasping pose. When the object is not directly graspable (e.g., a door), we
similarly sample a contact point and use a push action to achieve the target object transformation.

We treat the grasp/contact point as the first subgoal. Then, we iteratively apply the computed
transformation on the current subgoal to compute the next subgoal until all subgoals are computed.
Next, we use a position controller to control the robot to reach the subgoals one by one. More
details on inferring robot manipulation actions can be found in Section H.1. In contrast to our
approach, directly learning explicitly regress actions using a learned inverse dynamics requires a
substantial number of action labels so that a neural network can learn existing knowledge such as
inverse dynamics, grasping and motion-planning.

Inferring Robot Motion. The similar algorithm can also be applied to predict robot (i.e., the camera)
motion assuming all objects are static. Due to the duality of camera motion and object motion, we
can use exactly the same optimization algorithm to find Tt (object-centric motion), and the camera
motion Ct = (Tt)

−1. Concretely, we make the following modifications to adapt AVDC to navigation
tasks. (1) The video diffusion model is trained to duplicate the last frame once the object is found.
(2) Instead of tracking objects, we utilize the optical flow of the whole frame to estimate the rigid
transformations between frames. (3) Based on the calculated rigid transformations, we simply map
the transformations to the closest actions, detailed in Section H.2.

Depth Estimation. We can reconstruct 3D object or robot trajectories solely from the depth map of the
initial frame (i.e., the subsequent depth maps is not required). By leveraging dense correspondences
between frames and assuming rigid object motion, we can reconstruct accurate 3D trajectories. This
holds significant advantages as it enables us to train video prediction models exclusively using RGB
videos, allowing for learning from online sources like YouTube, and only requires an RGB-D camera
(or monocular depth estimator) at execution time. By eliminating the dependence on depth maps
from subsequent frames, our system is significantly more adaptable to various data sources.

Replanning Strategy. After inferring the object or robot trajectories, we can execute the trajectory
using a position controller in an open-loop manner. Yet, it can suffer from accumulated errors. As the
planning horizon increases, the accuracy of predicted object locations diminishes due to combined
errors in video synthesis and flow prediction. To mitigate this issue, we propose a replanning strategy.
If the robot movement is smaller than 1mm over 15 consecutive time steps while the task has not been
fulfilled, we re-run our video generation and action prediction pipeline from the current observation.

4 EXPERIMENTS
We describe the baselines and the variants of our proposed method AVDC in Section 4.1. Then,
we compare AVDC to its variants and the baselines on simulated robot arm manipulation tasks
in Meta-World (Figure 4a) in Section 4.2 and simulated navigation tasks in iTHOR (Figure 4b)
in Section 4.3. Note that although it is possible to obtain ground-truth actions from demonstrations in
these two domains, our method does not use these actions; instead, these actions are only used by the
baselines to provide an understanding of the task difficulty. Then, Section 4.4 evaluate the ability of
AVDC to control robots by learning from out-of-domain human videos without actions, as illustrated
in Figure 4c. In Section 4.5, we leverage the Bridge dataset (Figure 4d) and evaluate AVDC on
real-world manipulation tasks with a Franka Emika Panda robot arm (Figure 4e). Extended qualitative
results can be found in Section B and additional experimental details can be found in Section H.
4.1 BASELINES AND VARIANTS OF AVDC
Baselines. We compare AVDC to a multi-task behavioral cloning (BC) baseline given access to a
set of expert actions from all videos (15, 216 labeled frame-action pairs in Meta-World and 5, 757
in iTHOR), which are unavailable to our method. This baseline encodes the RGB observation to a
feature vector with a ResNet-18 (He et al., 2016). Then, the feature vector is concatenated with a
one-hot encoded camera ID and a task representation encoded by the CLIP-Text model (Radford
et al., 2021). The concatenated representation is then fed to a 3-layer MLP, which produces an action.

5

(a) Meta-World (b) iTHOR (c) Visual Pusher (d) Bridge (e) Panda Arm

Figure 4: Environments & Tasks. (a) Meta-World is a simulated benchmark featuring various tasks with a
Sawyer robot arm. (b) iTHOR is a simulated benchmark for embodied common sense reasoning. We adopt its
object navigation task, requiring navigating to target objects located in different rooms. (c) Visual Pusher is a
real-world video dataset with 195 human pushing videos. (d) Bridge is a real-world video dataset comprised of
33, 078 robot demonstrations conducting various kitchen tasks. (e) Panda Arm is a real-world pick-and-place
tabletop environment with a Franka Emika Panda robot arm.

We explore initializing the weights of ResNet-18 from scratch (BC-Scratch) or from the pre-trained
parameters of R3M (Nair et al., 2022) (BC-R3M).

Additionaly, we experimented with Diffusion Policy (Chi et al., 2023), which also leverages denoising
diffusion, but directly predicts actions instead of video frames like we did. We followed the setting
used by most of the experiments in the original paper. More details are described in Section H.1.4.

We also implement UniPi (Du et al., 2023), a learning-from-video method that learns an inverse
dynamics model to generate actions from videos, as a baseline. Specifically, UniPi infers actions from
the videos synthesized by AVDC. Since the exact number of steps between two generated frames
in our model may vary across different episodes, we modify the inverse dynamics model to output
an additional binary label indicating whether to switch to the next frame of synthesized video plans.
This predictor can be trained with the demonstrations (with actions) used to train the BC baselines.
AVDC and its Variants. We compare AVDC to its variants that also predict dense correspondence.

• AVDC (Flow) learns to directly predict the optical flow between frames as described in Sec-
tion 3.2. We include this variant to justify our 2-stage design, which synthesizes a video and
then infers optical flows between each pair of frames.

• AVDC (No Replan) is the opened-loop variant of our proposed method, which synthesizes a
video, infers flows, produces a plan, executes it, and finishes, regardless of if it fails or succeeds.
We include this variant to investigate whether our replanning strategy is effective.

• AVDC (Full) is our proposed method in full, employing the 2-stage design and can replan.
Additional Ablation Studies and Experiments. We also include additional ablation studies on the
effect of first-frame conditioning in video generation and different text encoders (e.g., CLIP and T5)
in Section E, a study of extracting object mask with existing segmentation model in Section D.1, an
experiment training BC with more data in Section D.2, using object masks extensively as proxy for
actions in Section D.3, and a quantitative quality analysis on the synthesized videos in Section D.4.
4.2 META-WORLD
Setup. Meta-World (Yu et al., 2019) is a simulated benchmark featuring various manipulation
tasks with a Sawyer robot arm. We include 11 tasks, and for each task, we render videos from 3
different camera poses. The same set of camera poses is used for training and testing. We collect 5
demonstrations per task per camera position, resulting in total 165 videos. To isolate the problem
of learning object manipulation skills, for our methods and all its variants, we provide the ground-
truth segmentation mask for the target object. We include an additional study on using external
segmentation models in Appendix D.1.

Each policy is evaluated on each task with 3 camera poses, each with 25 trials. A policy succeeds if it
reaches the goal state within the maximum environment step and fails otherwise. The positions of the
robot arm and objects are randomized when each episode begins. The result is reported in Table 1.

Comparison to Baselines. Our method AVDC (Full) consistently outperforms the two BC baselines
(BC-Scratch and BC-R3M) and UniPi on all the tasks by a large margin. Furthermore, AVDC
(Full) also outperforms the Diffusion Policy in 10 out of 11 tasks and in overall performance by a
significant margin. This indicates that the tasks are still very challenging, even with access to expert
actions. Note that AVDC (Full) is able to solve the task “hammer,” which involves using tools, with
performance surpassing all baselines. This is done by predicting actions based on tool motions.

Comparing AVDC Variants. AVDC (Flow) performs the best on button-press-topdown and achieves
reasonable performance on faucet-close and handle-press, while performing very poorly on the rest of

6

door-open door-close basketball shelf-place btn-press btn-press-top

BC-Scratch 21.3% 36.0% 0.0% 0.0% 34.7% 12.0%
BC-R3M 1.3% 58.7% 0.0% 0.0% 36.0% 4.0%
UniPi (With Replan) 0.0% 36.0% 0.0% 0.0% 6.7% 0.0%
Diffusion Policy 45.3 % 45.3 % 8.0 % 0.0 % 40.0 % 18.7 %

AVDC (ID) 0.0% 36.0% 0.0% 0.0% 0.0% 0.0%
AVDC (Flow) 0.0% 0.0% 0.0% 0.0% 1.3% 40.0%
AVDC (No Replan) 30.7% 28.0% 21.3% 8.0% 34.7% 17.3%
AVDC (Full) 72.0% 89.3% 37.3% 18.7% 60.0% 24.0%

faucet-close faucet-open handle-press hammer assembly Overall

BC-Scratch 18.7% 17.3% 37.3% 0.0% 1.3% 16.2%
BC-R3M 18.7% 22.7% 28.0% 0.0% 0.0% 15.4%
UniPi (With Replan) 4.0% 9.3% 13.3% 4.0% 0.0% 6.1%
Diffusion Policy 22.7% 58.7% 21.3% 4.0% 1.3% 24.1%

AVDC (ID) 4.0% 9.3% 13.3% 4.0% 0.0% 6.1%
AVDC (Flow) 42.7% 0.0% 66.7% 0.0% 0.0% 13.7%
AVDC (No Replan) 12.0% 17.3% 41.3% 0.0% 5.3% 19.6%
AVDC (Full) 53.3% 24.0% 81.3% 8.0% 6.7% 43.1%

Table 1: Meta-World Result. We report the mean success rate across tasks. Each entry of the table shows the
average success rate aggregated from 3 camera poses with 25 seeds for each camera pose.

Assembly
Goal

Inferred
Actions

State

Depth

Synthesized
Video

Predicted
Optical
 Flow

Figure 5: Qualitative Results on Meta-World. AVDC can reliably
synthesize a video, predict optical flow between frames, and infer
and execute actions to fulfill the assembly task. Current subgoals (•)
and next subgoals (•) are rendered in inferred action visualizations.

0 1 2 3 4 5
Number of Replans

20

30

40

50

Su
cc

es
s R

at
e

(%
)
Camera 1
Camera 2
Camera 3
Overall

Figure 6: Number of Replanning
Steps vs. Success Rate. Our method
AVDC achieves higher success rates
across all viewing angles with more re-
planning trials, justifying the effective-
ness of our replanning strategy.

the tasks. As described in Section 3.2, the diffusion model employed in this work may not be optimal
for flow prediction. Also, AVDC (Full) consistently outperforms AVDC (No Replan), justifying the
effectiveness of our closed-loop design, enabling replanning when the policy fails.

Intermediate Outputs. To provide insights into the pipeline of AVDC, we visualized the synthesized
video, predicted optical flow, and inferred actions (i.e., motion planning) in Figure 5. Our diffusion
model synthesizes a reasonable video showing the robot arm picking up the nut and placing it onto
the peg. The optical flow predicted from video frames accurately captures the robot arm’s motions.
Then, based on the predicted flow, the inferred actions can reliably guide the arm to fulfill the task.

Effect of Replanning Trials. We investigate how varying the maximum number of replanning step
affects the performance of AVDC. As presented in Figure 6, the success rate consistently increases
with more replanning trials, demonstrating the effectiveness of our proposed replanning strategy.

Failure Modes. The primary failure mode we observed is the errors made by the optical flow tracking
model, partially because these models are not trained on any in-domain data. Since the prediction
resolution is not very high in our experiments, small pixel-level errors in tracking small objects would
result in large errors in the 3D space. We believe that by directly increasing the resolution of video
synthesis or by training an in-domain optical flow model, we can improve the performance.

4.3 iTHOR
Setup. iTHOR (Kolve et al., 2017) is a simulated benchmark for embodied common sense reasoning.
We consider the object navigation tasks for evaluation, where an agent randomly initialized into a

7

RotateRight
↱

MoveForward
↑

RotateLeft
↰

Done
✓

Inferred
Actions

State

Depth

Television
Goal

Synthesized
Video

Predicted
Optical
 Flow

Figure 7: Qualitative Results on iTHOR. AVDC can reliably syn-
thesize a video, predict optical flow between frames, and infer and
execute actions to navigate to the television.

Room BC-Scratch BC-R3M AVDC

Kitchen 1.7% 0.0% 26.7%
Living Room 3.3% 0.0% 23.3%

Bedroom 1.7% 1.7% 38.3%
Bathroom 1.7% 0.0% 36.7%

Overall 2.1% 0.4% 31.3%

Table 2: iTHOR Result. We report
the mean success rate, aggregated from
3 types of objects per room with 20
episodes per object. Both the two BC
baselines fail to achieve meaningful per-
formance on the iTHOR object naviga-
tion tasks. On the other hand, AVDC
performs reasonably with a 31.3% av-
erage success rate.

scene learns to navigate to an object of a given type (e.g., toaster, television). At each time step,
the agent observes a 2D scene and takes one of the four actions: MoveForward, RotateLeft,
RotateRight, and Done. We chose 12 different objects to be placed at 4 type of rooms (e.g.,
kitchen, living room). No object segmentation is required in this navigation task.

Each policy is evaluated on 12 object navigation tasks distributed in 4 different types of rooms (3
tasks for each room). A policy succeeds if the target object is in the agent’s sight and within a 1.5m
distance within the maximum environment step or when Done is predicted and fails otherwise. The
position of the agent is randomized at the beginning of each episode. The result is reported in Table 2.

Comparison to Baselines. Our proposed method AVDC can find target objects in different types
of rooms fairly often (31.3%), while the two BC baselines fail entirely. BC-R3M with a pre-trained
ResNet-18 performs worse than BC-Scratch, which can be attributed to the fact that R3M is pre-
trained on robot manipulation tasks and might not be suitable for visual navigation tasks.

Intermediate Outputs. The intermediate outputs produced by AVDC are presented in Figure 7.
The diffusion model can synthesize video showing an agent navigating to the target object. Then,
desired agent movements can be easily inferred from the predicted optical flow, resulting in the
ease of mapping the flow to MoveForward, RotateLeft, or RotateRight. When no flow is
predicted, it indicates the agent has found the object and selects Done as the predicted action.

4.4 CROSS-EMBODIMENT LEARNING: FROM HUMAN VIDEOS TO ROBOT EXECUTION

We aim to examine if AVDC can achieve cross-embodiment learning, e.g., leverage human demon-
stration videos to control robots to solve tasks.

(a) Synthesized Video

(b) Robot Execution

Figure 8: Qualitative Results on Visual Pusher.
AVDC can (a) synthesize video plans by watching
human demonstrations and (b) infer actions to con-
trol the robot without any fine-tuning.

Setup. We evaluate our method with Visual Pusher
tasks (Schmeckpeper et al., 2021; Zakka et al.,
2022). Specifically, we learn a video diffusion
model from only actionless human pushing data
(198 videos), with the same U-net architecture used
in Meta-World experiments and trained the model
for 10k steps. Then, we evaluate AVDC on simu-
lated robot pushing tasks without any fine-tuning.

Results. AVDC exhibits strong zero-shot transfer
capability, achieving a 90% zero-shot success rate
out of 40 runs. This indicates that AVDC can per-
form cross-embodiment learning — utilizing out-
of-domain human videos to achieve reliable robot
execution. A synthesized video and the corresponding robot execution are illustrated in Figure 8.

4.5 REAL-WORLD FRANKA EMIKA PANDA ARM WITH BRIDGE DATASET

We aim to investigate if our proposed framework AVDC can tackle real-world robotics tasks. To
this end, we train our video generation model on the Bridge dataset (Ebert et al., 2022), and perform
evaluation on a real-world Franka Emika Panda tabletop manipulation environment.

8

Figure 9: Qualitative Results on
Bridge. AVDC can reliably infer cur-
rent subgoals (•) and next subgoals (•)
for real-world robot manipulation tasks.

State

Depth

Put apple
in plate

Goal

Figure 10: Qualitative Results on Franka Emika Panda. AVDC
can reliably synthesize a video, predict optical flow between frames,
and infer and execute actions to fulfill the assembly task. Current
subgoals (•) and next subgoals (•) are rendered in the bottom row.

Setup. The Bridge dataset (Ebert et al., 2022) provides 33, 078 teleoperated WidowX 250 robot
demonstrations of various kitchen tasks captured by a web camera without depth information. Our
real-world setup comprises a Franka Emika Panda robot arm and an Intel Realsense D435 RGBD
camera mounted at a fixed frame relative to the table. Due to the differences in camera FOVs and the
environmental setup, directly applying the video generative model trained on Bridge to our setup does
not generalize well. We thus fine-tuned the diffusion model with 20 human demonstrations collected
with our setup. In our real-world evaluation, we assume that the target object can be grasped using a
top-grasp so that no reorientation of the target object is needed. Note that both the Bridge dataset and
our human demonstration datasets do not contain any action label relevant to our robot: Bridge is
based on a different robot model and our tabletop videos are human hand manipulation videos.

Zero-Shot Generalization of Bridge Model. We found that the video diffusion model trained on
Bridge videos can reasonably generalize to real scenes without fine-tuning, as discussed in Section C.

Results. The predicted object motion qualitative results on the Bridge dataset are presented in Fig-
ure 9. AVDC can reliably synthesize videos, predict optical flow, identify target objects, and infer
actions. Figure 10 presents the visualizations of planned robot trajectories, showcasing the successful
deployment of our system. More qualitative results can be found in Section B. We also quantitatively
evaluated the entire pipeline. To this end, we set up 10 scenes with different initial object configura-
tions and tasks. Each task requires a pick-and-place of an object of a specified category (e.g., apple)
to a container (e.g., plate). The results are detailed in Section H.3.

5 DISCUSSION
Limitations. Although our AVDC demonstrates success in diverse simulated and real-world domains,
it has several limitations. First, when the majority of an object is occluded by the robot arm, our
algorithm may lose track of the object. Moreover, the model can struggle in optical flow prediction
under rapidly changing lighting conditions or large object movements in object poses. Additionally,
our current implementation cannot effectively handle tasks involving deformable objects. A potential
extension to overcome this could be the tracking of key points, such as the corners of a piece of
cloth, to recover robot motion. However, this approach would necessitate additional knowledge about
key points or other representations of deformable objects, posing a new challenge. Furthermore,
real-world object manipulation requires predicting grasps or contact surfaces for pushing on objects.
However, this information isn’t directly transferable from real videos due to the disparity between
various robot hands and between humans and robots. Therefore, integration of other manipulation
algorithms, such as grasp prediction modules (Sundermeyer et al., 2021), is important. Finally, force
information, crucial for manipulation, is unobtainable from RGB videos. Future work may consider
learning or fine-tuning with real-world interactions to address this.

Conclusion. This work presents an approach to learning to act directly in environments given only
RGB video demonstrations. To regress actions, our approach exploits dense correspondences between
synthesized video frames to infer a transform on objects or surrounding to enact to reach the next
synthesized state. We illustrate the general applicability of this approach in both simulated and
real-world manipulation and navigation tasks. We further present an open-source implementation for
efficient and cheap robot video modeling, enabling effective video policy training in both academic
and industry settings. We hope our work inspires further work on learning from videos, which can be
readily found on the internet and readily captured across robots.

9

REFERENCES

Shikhar Bahl, Abhinav Gupta, and Deepak Pathak. Human-to-robot imitation in the wild. In Robotics:
Science and Systems, 2022.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video PreTraining (VPT): Learning to Act by Watching
Unlabeled Online Videos. In Neural Information Processing Systems, 2022.

Homanga Bharadhwaj, Abhinav Gupta, Shubham Tulsiani, and Vikash Kumar. Zero-Shot Robot
Manipulation from Passive Human Videos. arXiv:2302.02011, 2023.

Annie S Chen, Suraj Nair, and Chelsea Finn. Learning Generalizable Robotic Reward Functions
from ”In-The-Wild” Human Videos. In Robotics: Science and Systems, 2021.

Bhateja Chethan, Guo Derek, Ghosh Dibya, Singh Anikait, Tomar Manan, Vuong Quan, Chebotar
Yevgen, Levine Sergey, and Kumar Aviral. Robotic Offline RL from Internet Videos via Value-
Function Pre-Training. arXiv:2309.13041, 2023.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings of
Robotics: Science and Systems (RSS), 2023.

Ethan Chun, Yilun Du, Anthony Simeonov, Tomas Lozano-Perez, and Leslie Kaelbling. Local
Neural Descriptor Fields: Locally Conditioned Object Representations for Manipulation. In IEEE
International Conference on Robotics and Automation, 2023.

Prafulla Dhariwal and Alexander Nichol. Diffusion Models Beat GANs on Image Synthesis. In
Neural Information Processing Systems, 2021.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-Conditioned Imitation
Learning. In Neural Information Processing Systems, 2019.

Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B Tenenbaum, Dale Schu-
urmans, and Pieter Abbeel. Learning Universal Policies via Text-Guided Video Generation.
arXiv:2302.00111, 2023.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge Data: Boosting Generalization of Robotic
Skills with Cross-Domain Datasets. In Robotics: Science and Systems, 2022.

Alejandro Escontrela, Ademi Adeniji, Wilson Yan, Ajay Jain, Xue Bin Peng, Ken Goldberg, Young-
woon Lee, Danijar Hafner, and Pieter Abbeel. Video Prediction Models as Rewards for Reinforce-
ment Learning. arXiv:2305.14343, 2023.

Bin Fang, Shidong Jia, Di Guo, Muhua Xu, Shuhuan Wen, and Fuchun Sun. Survey of Imitation
Learning for Robotic Manipulation. International Journal of Intelligent Robotics and Applications,
2019.

Chelsea Finn and Sergey Levine. Deep Visual Foresight for Planning Robot Motion. In IEEE
International Conference on Robotics and Automation, 2017.

Peter R Florence, Lucas Manuelli, and Russ Tedrake. Dense Object Nets: Learning Dense Visual
Object Descriptors By and For Robotic Manipulation. In Conference on Robot Learning, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2016.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video Diffusion Models. In Neural Information Processing Systems, 2022.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira.
Perceiver: General Perception with Iterative Attention. In International Conference on Machine
Learning, 2021.

10

Siddharth Karamcheti, Suraj Nair, Annie S. Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh, and
Percy Liang. Language-driven representation learning for robotics. arXiv:2302.12766, 2023.

Haresh Karnan, Faraz Torabi, Garrett Warnell, and Peter Stone. Adversarial Imitation Learning from
Video using a State Observer. In IEEE International Conference on Robotics and Automation,
2022.

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
stette, Pushmeet Kohli, and Peter Battaglia. CompILE: Compositional Imitation Learning and
Execution. In International Conference on Machine Learning, 2019.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment Anything. arXiv:2304.02643, 2023.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv:1712.05474, 2017.

Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel. Learning Plannable
Representations with Causal InfoGAN. In Neural Information Processing Systems, 2018.

Jangwon Lee and Michael S Ryoo. Learning Robot Activities from First-Person Human Videos
Using Convolutional Future Regression. In CVPRW, 2017.

Youngwoon Lee, Andrew Szot, Shao-Hua Sun, and Joseph J. Lim. Generalizable Imitation Learning
from Observation via Inferring Goal Proximity. In Neural Information Processing Systems, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv:2005.01643, 2020.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding DINO: Marrying DINO with Grounded Pre-Training
for Open-set Object Detection. arXiv:2303.05499, 2023.

Lucas Manuelli, Wei Gao, Peter Florence, and Russ Tedrake. kPAM: KeyPoint Affordances for
Category-Level Robotic Manipulation. In ISRR, 2022.

Luca Medeiros. Language Segment-Anything, 2023. URL https://github.com/luca-medeiros/
lang-segment-anything. GitHub repository.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3M: A Universal
Visual Representation for Robot Manipulation. In Conference on Robot Learning, 2022.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An Algorithmic Perspective on Imitation Learning. Foundations and Trends® in Robotics, 2018.

Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto. The
Surprising Effectiveness of Representation Learning for Visual Imitation. In Robotics: Science
and Systems, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning Transferable Visual
Models From Natural Language Supervision. In International Conference on Machine Learning,
2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention, 2015.

Hyunwoo Ryu, Jeong-Hoon Lee, Hong-in Lee, and Jongeun Choi. Equivariant Descriptor Fields:
SE(3)-Equivariant Energy-Based Models for End-to-End Visual Robotic Manipulation Learning.
In International Conference on Learning Representations, 2023.

Tim Salimans and Jonathan Ho. Progressive Distillation for Fast Sampling of Diffusion Models. In
International Conference on Learning Representations, 2022.

11

https://github.com/luca-medeiros/lang-segment-anything
https://github.com/luca-medeiros/lang-segment-anything

Karl Schmeckpeper, Oleh Rybkin, Kostas Daniilidis, Sergey Levine, and Chelsea Finn. Reinforcement
learning with videos: Combining offline observations with interaction. In Conference on Robot
Learning, 2021.

Lin Shao, Toki Migimatsu, Qiang Zhang, Karen Yang, and Jeannette Bohg. Concept2Robot: Learning
Manipulation Concepts from Instructions and Human Demonstrations. IJRR, 2021.

Pratyusha Sharma, Deepak Pathak, and Abhinav Gupta. Third-person visual imitation learning via
decoupled hierarchical controller. In Neural Information Processing Systems, 2019.

Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B Tenenbaum, Alberto Rodriguez,
Pulkit Agrawal, and Vincent Sitzmann. Neural Descriptor Fields: SE(3)-Equivariant Object
Representations for Manipulation. In IEEE International Conference on Robotics and Automation,
2022.

Anthony Simeonov, Yilun Du, Yen-Chen Lin, Alberto Rodriguez Garcia, Leslie Pack Kaelbling,
Tomás Lozano-Pérez, and Pulkit Agrawal. SE(3)-Equivariant Relational Rearrangement with
Neural Descriptor Fields. In Conference on Robot Learning, 2023.

Aravind Sivakumar, Kenneth Shaw, and Deepak Pathak. Robotic Telekinesis: Learning a Robotic
Hand Imitator by Watching Humans on Youtube. In Robotics: Science and Systems, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. In
International Conference on Learning Representations, 2021.

Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E Shi. Human action recognition using factorized
spatio-temporal convolutional networks. In International Conference on Computer Vision, 2015.

Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph Lim. Neural program synthesis
from diverse demonstration videos. In International Conference on Machine Learning, 2018.

Priya Sundaresan, Jennifer Grannen, Brijen Thananjeyan, Ashwin Balakrishna, Michael Laskey,
Kevin Stone, Joseph E Gonzalez, and Ken Goldberg. Learning Rope Manipulation Policies Using
Dense Object Descriptors Trained on Synthetic Depth Data. In IEEE International Conference on
Robotics and Automation, 2020.

Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox. Contact-GraspNet:
Efficient 6-DoF Grasp Generation in Cluttered Scenes. In IEEE International Conference on
Robotics and Automation, 2021.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral Cloning from Observation. In IJCAI,
2018.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative Adversarial Imitation from Observation.
In Imitation, Intent, and Interaction (I3) Workshop, 2019a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Recent Advances in Imitation Learning from
Observation. In IJCAI, 2019b.

Hsiang-Chun Wang, Shang-Fu Chen, and Shao-Hua Sun. Diffusion Model-Augmented Behavioral
Cloning. arXiv:2302.13335, 2023.

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and Dacheng Tao. GMFlow: Learning
Optical Flow via Global Matching. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022.

Lin Yen-Chen, Pete Florence, Jonathan T Barron, Tsung-Yi Lin, Alberto Rodriguez, and Phillip Isola.
NeRF-Supervision: Learning Dense Object Descriptors from Neural Radiance Fields. In IEEE
International Conference on Robotics and Automation, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement
Learning. In Conference on Robot Learning, 2019.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi.
XIRL: Cross-embodiment inverse reinforcement learning. In Conference on Robot Learning, 2022.

12

APPENDIX

Table of Contents
A Code 13

B Extended Qualitative Results 13

C Zero-Shot Generalization on Real-World Scenes 13

D Extended Experiments 14
D.1 Object mask with segmentation models . 14
D.2 BC with more data . 14
D.3 Object Mask as Proxy for Action . 15
D.4 Quality Analysis on Synthesized Videos . 15

E Additional Ablation Studies 15
E.1 First-Frame Conditioning . 15
E.2 Text Encoder . 16
E.3 Factorized Spatial-Temporal Convolution . 16

F Model Architecture and Training Detail 16
F.1 Text Encoder . 16
F.2 Video Diffusion Model . 16

G Hardware and complexity analysis 17
G.1 Training cost . 17
G.2 Inference cost . 17
G.3 Replanning cost . 17
G.4 Improving Inference Efficiency with Denoising Diffusion Implicit Models 17

H Details on Experimental Setup 18
H.1 Meta-World Experimental Setup . 18
H.2 iTHOR Experimental Setup . 19
H.3 Real-World Franka Emika Panda Arm Experimental Setup 20

A CODE

The code for reproducing our results is included in ./codebase AVDC directory of the attached
supplementary .zip file.

B EXTENDED QUALITATIVE RESULTS

Our supplementary website presents additional qualitative results, including

• Synthesized Videos: Meta-World, iTHOR, Visual Pusher, and Bridge.

• Task Execution Videos: Meta-World, iTHOR, Visual Pusher, and the real-world Franka
Emika Panda tasks.

C ZERO-SHOT GENERALIZATION ON REAL-WORLD SCENES

While most tasks in the Bridge data were recorded in toy kitchens, we found that the video diffusion
model trained on this dataset already can generalize to complex real-world kitchen scenarios, produc-
ing reasonable videos given RGB images and textual task descriptions. Examples of the synthesized
videos can be found on our supplement website.

13

https://flow-diffusion.github.io/#vidgenresults

Failed mask prediction

Input text: small faucet handle Input text: gray door

Input text: small faucet handle

Successful mask prediction

Input text: gray door

Figure 11: Object Mask with Segmentation models. Successful and failed object masks extracted by Language
Segment Anything.

D EXTENDED EXPERIMENTS

D.1 OBJECT MASK WITH SEGMENTATION MODELS

We experimented with utilizing existing segmentation methods to extract the object mask for our
action regression algorithm. We employed Language Segment-Anything (Medeiros, 2023), which
is based on GroundingDINO (Liu et al., 2023) and Segment-Anything (Kirillov et al., 2023). The
experiment was conducted in our Meta-World setting, using the predicted object mask instead of the
GT object mask. In this setup, the achieved success rate averaged over all 11 tasks is 34.5%, which
is 8.6% lower than the success rate using the GT object mask (43.1%). The performance drop is
attributed to incorrect object masks produced by the object segmentation model. Qualitative object
segmentation results are presented in Figure 11.

D.2 BC WITH MORE DATA

We experimented with training plain BC with more data. The results are reported below.

Door-Open Door-Close Basketball Shelf-Place Btn-Press Btn-Press-Top

AVDC-165 72.0% 89.3% 37.3% 18.7% 60.0% 24.0%
BC-165 21.3% 36.0% 0.0% 0.0% 34.7% 12.0%
BC-330 21.3% 65.3% 0.0% 0.0% 45.3% 21.3%
BC-660 61.3% 72.0% 0.0% 1.3% 77.3% 49.3%
BC-1650 96.0% 81.3% 0.0% 0.0% 96.0% 85.3%

Faucet-Close Faucet-Open Handle-Press Hammer Assembly Overall

AVDC-165 53.3% 24.0% 81.3% 8.0% 6.7% 43.1%
BC-165 18.7% 17.3% 37.3% 0.0% 1.3% 16.2%
BC-330 44.0% 29.3% 29.3% 2.7% 0.0% 23.5%
BC-660 77.3% 77.3% 62.7% 10.7% 0.0% 44.5%
BC-1650 93.3% 94.7% 86.7% 12.0% 0.0% 58.7%

Table 3: BC with More Data

Table 3 shows that plain BC needs 20 videos per view (in total 660 videos with action labels, compared
to AVDC trained with 165 videos without action labesls) to perform similarly to our method AVDC
(43.1% overall). That said, BC needs around 4 times more videos and action labels than our method,
which highlights the efficiency of our proposed method. More importantly, BC still cannot learn

14

most tasks that require grasps (e.g., pick and place, use tools) even with 50 demonstrations per view
(BC-1650).

It’s important to emphasize that we included the performance of BC to calibrate the difficulty of the
tasks, and BC has access to action labels that are not accessible to our proposed method; therefore,
this is not a fair comparison.

D.3 OBJECT MASK AS PROXY FOR ACTION

AVDC have access to object masks only at test time. However, it’s also possible to obtain object mask
during training time by running the existing object segmentation model on the training dataset. Such
extensive use of object mask can serve as a proxy for actions. To provide an idea of the performance
of using object masks as a proxy for actions, we have conducted experiments with the following
setting: We trained a model that takes in a segmented object and directly predicts optical flow within
the segmentation (without diffusion). Then, we used the same procedure as AVDC to calculate
actions. The results are presented as follows.

Door-Open Door-Close Basketball Shelf-Place Btn-Press Btn-Press-Top

Object Mask Proxy 1.3% 20.0% 0.0% 0.0% 12.0% 2.7%
AVDC (Full) 72.0% 89.3% 37.3% 18.7% 60.0% 24.0%

Faucet-Close Faucet-Open Handle-Press Hammer Assembly Overall

Object Mask Proxy 25.3% 9.3% 17.3% 2.7% 0.0% 8.2%
AVDC (Full) 53.3% 24.0% 81.3% 8.0% 6.7% 43.1%

Table 4: Object mask as Proxy for Action

Table 4 shows that our proposed AVDC outperforms the method that predicts the object masks as a
proxy for the actions.

D.4 QUALITY ANALYSIS ON SYNTHESIZED VIDEOS

We further quantitatively compared the synthesized videos to the ground truth videos regarding PSNR,
SSIM, MSE, and LPIPS. Specifically, we synthesized videos with our trained Meta-World video
model given unseen first frames (Unseen initial configurations), and compared every synthesized
video frame to the corresponding ground truth video frame. We report average PSNR, SSIM, MSE,
and LPIPS (AlexNet) scores over 15 videos for each view, totaling 15*3*11=495 videos being
evaluated. Also, we report the scores comparing the last frames of synthesized videos and ground
truth videos. The following table summarizes the result.

PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓

Last Frame 25.46 0.8920 0.0050 0.0525
Whole Video 25.02 0.8847 0.0057 0.0557

Table 5: Quantative Quality Analysis on Synthesized Videos

Table 5 shows that our proposed video diffusion model can reliably synthesize videos of task
execution.

E ADDITIONAL ABLATION STUDIES

E.1 FIRST-FRAME CONDITIONING

To study the effectiveness of our first-frame conditioning strategy, we conducted a quantitative
experiment that compares our RGB-channel-wise concatenating strategy with a trivial baseline:
frame-wise concatenate, which concatenates the input frame before the first frame of the noisy video.
We calculated the mean squared error (MSE) between the last frame of the ground video and the last
frame of the synthesized video to evaluate the quality of synthesized videos. We show the results
in Figure 12. Each data point is an average MSE calculated with 4000 samples of video generation,
and the error bar shows the standard error of MSEs. Our method (cat c) consistently outperforms

15

20000 25000 30000 35000 40000 45000 50000 55000 60000
Training Steps

0.018

0.020

0.022

0.024

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

cat_c+CLIP (Ours)
cat_t+CLIP
cat_c+T5 base

Figure 12: Additional Ablation Studies on the First Frame Condition Strategy and Text Encoders. We
ablate the first frame conditioning strategy and compare the performance of different text encoders. Specifically,
we calculate the MSE between the last frame of a ground truth video and the last frame of a synthesized video.
cat c (Ours): the first frame is concatenated with a noisy video in RGB dimension, which is our proposed
method. cat t: the first frame is concatenated with a noisy video in time dimension. CLIP: CLIP text encoder
(63M). T5: T5 base encoder (110M).

frame-wise concatenating (cat t) in the early stages of training on the Bridge dataset. Some qualitative
generation results can be found on our supplementary website.

E.2 TEXT ENCODER

We compare the video generation quality of our CLIP-text encoder (63M parameters) with the same
model but with a T5-base encoder (110M parameters), dubbed AVDC (T5-Base). We used the same
pixel-level MSE error as the evaluation metric. Figure 12 shows the result. The difference between
the performance of the two text encoders is not significant.

E.3 FACTORIZED SPATIAL-TEMPORAL CONVOLUTION

We compare the minimum VRAM requirement to train a video model in our setting with and without
spatial-temporal convolution. The minimum requirement for training with a batch size of 1 in
our Meta-World setting is 13139MB with factorized convolution and 16708MB without it. Our
Bridge setting requires 8625MB with factorized convolution and 12606MB without it. In our Bridge
experiments, we fine-tuned our video diffusion model on human data on a 3080-Ti GPU (12GB
VRAM), which is only possible with factorized convolution.

F MODEL ARCHITECTURE AND TRAINING DETAIL

F.1 TEXT ENCODER

We used a fixed pre-trained CLIP-Text encoder for encoding text descriptions. After encoding a text
description with the encoder, we employ (Perceiver; Jaegle et al., 2021) as our attention-pooling
network to aggregate the output tokens from the CLIP-text encoder into one single vector and
added it to the time embedding of the diffusion model. This simple condition mechanism has been
successful in our experiments. We did not use cross-attention on text inputs throughout this work.
The hyperparameters of Perceiver are listed in Table 6.

F.2 VIDEO DIFFUSION MODEL

For all models, we use dropout=0, num head channels=32, train/inference timesteps=100, training
objective=predict v, beta schedule=cosine, loss function=l2, min snr gamma=5, learning rate=1e-4,
ema update steps=10, ema decay=0.999. We list all other hyperparameters in Table 7.

16

https://flow-diffusion.github.io/#vidgencomparison

Parameter Value

layers 2
num attn heads 8
num head channels 64
num output tokens 64
num output tokens from pooled 4
max seq len 512
ff expansion factor 4

Table 6: Model parameters for our Perceiver.

Meta-World iTHOR Bridge

num parameters 201M 109M 166M
resolution (128, 128) (64, 64) (48, 64)
base channels 128 128 160
num res block 2 3 3
attention resolutions (8, 16) (4, 8) (4, 8)
channel mult (1, 2, 3, 4, 5) (1, 2, 4) (1, 2, 4)
batch size 16 32 32
training timesteps 60k 80k 180k

Table 7: Comparison of configuration parameters for Meta-World, iTHOR, and Bridge.

G HARDWARE AND COMPLEXITY ANALYSIS

G.1 TRAINING COST

We train all models on 4 V100 GPUs with 32GB memory each. For environment-specific datasets
like those used in Meta-World and iTHOR experiments, the training of video policies can be finished
within a day. As for a much larger dataset like Bridge, we have to train for longer to obtain consistent
results. Despite the large size of Bridge data compared to the datasets we used in the other two
experiments, we can generate high-quality and consistent results with just two days of training.

• Meta-World: about 24 hours of training (165 videos)
• iTHOR: about 24 hours of training (240 videos)
• Real-world experiment: about 48 hours of pre-training on around 40k Bridge videos and 4

hours of fine-tuning on 20 human videos.

G.2 INFERENCE COST

We conducted our experiments (inference) on a machine with an RTX 3080Ti as GPU. We provide a
detailed run time breakdown on Meta-World experiment of each step of our method below.

• Text-Conditioned Video Generation: Synthesizing a video of predicted execution is the most
time-consuming step of our method, which takes roughly 10.57 seconds (1.51 seconds per
video frame on average).

• Flow Prediction: Predicting optical flow between a pair of two subsequent frames takes 0.28
seconds on average.

• Action Regression from Flows and Depths: Inferring the action from optical flow prediction
1.31 seconds on average.

• Action Execution: Running an inferred action using the controller in the environment takes
1.53 seconds on average.

G.3 REPLANNING COST

In Meta-World experiments, AVDC used about 18 seconds for each round of action planning. Since
the maximum number of replans is set to 5, the number of action planning rounds within an episode
varies from 1 to 6. Therefore, the total planning cost ranges from about 18 to 108 seconds on a Nvidia
GeForce RTX 3080Ti GPU.

G.4 IMPROVING INFERENCE EFFICIENCY WITH DENOISING DIFFUSION IMPLICIT MODELS

We can incorporate various techniques into our method to improve its inference efficiency. To
speed up the video synthesis step, we can progressively distill the diffusion models for faster

17

sampling (Salimans & Ho, 2022). Also, we can leverage lighter-weight optical flow prediction
models to increase efficiency. To accelerate action prediction from flows, we can design more
sophisticated techniques for sampling and optimizing actions or parallelizing them using GPUs.

This section investigates the possibility of accelerating the sampling process using Denoising Dif-
fusion Implicit Models (DDIM; Song et al., 2021). To this end, instead of iterative denoising 100
steps, as reported in the main paper, we have experimented with different numbers of denoising steps
(e.g., 25, 10, 5, 3) using DDIM. The qualitative results of synthesized videos are presented on our
supplementary website.

We have found that reducing the number of denoising steps to 10 still leads to satisfactory generated
video quality while resulting in a 10x speedup in video generation. Specifically, the overall mean
success rate across tasks in Meta-World with 10-step DDIM is 37.5%, which is competitive with our
original method with 100 denoising steps with an overall success rate of 43.1%. That said, when the
task is running time-critical, we can speed up the video generation step by ten times with only 5.6%
drop in task performance.

H DETAILS ON EXPERIMENTAL SETUP

This section describes experimental details, including learning diffusion models, inferring actions,
replanning strategies, etc.

H.1 META-WORLD EXPERIMENTAL SETUP

This section describes the details of the Meta-World experiments.

H.1.1 LEARNING THE DIFFUSION MODEL

We aim to learn a video diffusion model that can synthesize a video, showing a robot fulfilling a
task, from an initial frame and a the task described in natural language. We found that in most
goal-conditioned manipulation tasks, the final frame of the whole video is often highly correlated
to the text description when the current (first) frame is given. In other words, the model can easily
synthesize the last frame given the current frame and text description, while the model is often more
uncertain about intermediate frames and therefore performs poorly in synthesizing intermediate
frames.

To take advantage of this finding, we propose an adaptable frame sampling technique to sample
frames from the whole video for training. In particular, we first randomly sample a frame from
the whole video dataset as the current frame. We then uniformly sample T − 2 frames from the
current (i.e., initial) frame to the final frame from the same video. Then, we use these T frames
(1 current/initial frame, T − 2 intermediate frames, and 1 final frame) to train our video diffusion
model. We empirically found that this adaptable frame sampling technique significantly improves
the learning efficiency of the video diffusion model, enabling the training to finish within a single day
using just 4 GPUs.

H.1.2 CALCULATING OBJECT RIGID TRANSFORMATIONS AND INFERRING ACTIONS

Given the predicted optical flow between each pair of frames of a synthesized video and the initial
frame, we aim to infer a robot’s actions to follow the synthesized video.

Tracking Object and Determining Contact Point. Since Meta-World focuses on manipulating
objects, we propose to track an object of interest by extracting an object mask. To determine the
contact point for the robot to grasp an object, we simply sample N = 500 points from the object mask
and compute the centroid of an object as the contact point. Note that more sophisticated methods for
determining contact points can be employed to further improve the proposed method.

Calculating Object Rigid Transformation Object and Computing Subgoal. Given the optical
flow computed from the synthesized video frames, we can use it to compute the 2D correspondence
between two frames. We use the RANSAC algorithm to find an optimal 2D transformation that
produces the most inliners from the 2D correspondences. We only use these inliner points for the
computations in the current and the following steps for better robustness. We apply our method as
described in Section 3.3 to obtain a sequence of 3D rigid transformations. Then, we apply these

18

https://flow-diffusion.github.io/#DDIMresults

transformations on the sampled grasp sequentially to obtain a sequence of subgoals, indicating how
the object should be moved.

Inferring Actions. Given each subgoal, we decide whether to use ”grasp” action or ”push” action
to interact with the object by checking if the maximum magnitude of vertical displacement exceeds
10cm based on the heuristic that pick-and-place tasks usually require the robot to lift the object, which
produces a vertical displacement; on the other hand, optimal object trajectories of pushing tasks do
not exhibit such vertical displacement.

Once we decide if the robot should ”grasp” or ”push” the object, we determine the robot arm’s
action as follows. For the grasp mode, we simply control the robot to take a grasping action (closing
the grippers) at the point and then move toward the subgoals. For the push mode, we put the robot
arm in a specific direction to the object that allows pushing before moving the robot towards the
subgoals. We calculate such direction by extrapolating the line between the push point and the first
subgoal more than 10cm away from the grasp. Here, we consider the sampled grasp location as the
contact point for the push action, referred to as the ”push point”.

H.1.3 REPLANNING STRATEGY

In Meta-World, we replan (i.e., perform the closed-loop control) by synthesizing a video with the
current observed state as the initial frame for the video diffusion model. Then, we use the current
object mask and depth information to compute a new sequence of subgoals. Note that we do not
re-decide the interaction mode. For the grasp mode, we simply move the gripper toward the new
subgoals. For the push mode, we re-initialize the gripper as described above. In specific, when
re-planning is triggered, we re-initialize the gripper by 1) syntheiszing a video plan, 2) sampling grasp
and calculating subgoals, and 3) calculating the direction for placing the gripper by extrapolating the
line between the grasp point and the first subgoal. Once the re-initilization is done, we can start the
robot execution. After the re-initialization, we start to move the gripper toward the new subgoals.

H.1.4 DETAILS OF BASELINES

Diffusion Policy Following the original paper, the image observation is encoded with the adapted
ResNet-18 with group norm and spatial softmax pooling. For the diffusion backbone model, we
experimented with the 1D convolutional FiLM U-net architecture proposed in the paper. The
backbone model is adapted to take in task embeddings, i.e., the CLIP-Text task embeddings are
concatenated with the observation embeddings. The hyperparameters To (the number of past frames
used as a condition), Tp (the number of future actions to predict), and Ta (the number of actions to
execute before replanning, 0¡Ta ¡=Tp), were set to align with the configurations used in most of the
paper’s experiments. Specifically, we set (To, Tp, Ta) = (2, 16, 8). We used a batch size of 4096 and
evaluated the checkpoints at 15k, 25k and 35k training steps. We picked the checkpoint with the best
overall performance as the Diffusion model baseline.

H.2 ITHOR EXPERIMENTAL SETUP

This section describes the details of the iTHOR experiments.

H.2.1 LEARNING THE DIFFUSION MODEL

We aim to learn a video diffusion model that can synthesize a video that shows an agent navigating
to a target object in first-person point of view in iTHOR indoor scenes. To sample video segments
for training, we first randomly sample a frame from the video demonstration dataset, and then we
retrieve T − 1 consecutive future frames from the same video. We do not skip any intermediate
frames (i.e., we do not apply the adaptable frame sampling technique used in Meta-World), as iTHOR
environment uses discrete actions such as moving and rotating for a constant distance or angle. If the
number of subsequent frames is less than T − 1 in the sampled video, we duplicate the last frame to
compensate for missing frames. This allows the model to recognize that the target object is found
and the agent should stop moving.

H.2.2 CALCULATING SCENE TRANSFORMATIONS AND INFERRING ACTIONS

Tracking Scene and Calculating Scene Transformation. In the navigation setup, instead of tracking
the correspondences of a particular object, we track the correspondences of the entire scene. To this
end, instead of generating an object mask, we initialize a scene mask by thresholding out moving

19

points (magnitude of optical flow > 1). Then, to calculate the scene transformation, we apply a
similar procedure to the Meta-World experiment for computing the object transformation. However,
we do not use the RANSAC algorithm to obtain inliners; instead, at each time step, we simply remove
the key points that move out-of-bound (i.e., outside the image) and keep the rest as the inliner points
to calculate the scene transformation.

Inferring Actions. Given calculated the scene transformation at each step, we design a procedure to
infer an action (MoveForward, RotateLeft, RotateRight, or Done). We propose to observe
an imaginary point located 1 meter in front of the robot. We apply the calculated scene transformation
on this imaginary point. We then decide the action based on the translation of this imaginary point
before and after applying the transformation. Specifically, if the translation is close to 0 (< 1mm),
since the agent stays still, we choose Done. Otherwise, we check the horizontal displacement
of this imaginary point. If the magnitude of the horizontal displacement is less than 25cm, we
choose MoveForward. Otherwise, we select RotateLeft or RotateRight depending on the
direction of the displacement.

H.2.3 REPLANNING STRATEGY

In iTHOR, we replan when we lose track of most correspondences from the initial frame. Specifically,
if the number of inliners we keep is less than 10% of the original number we sampled, we re-synthesize
a video, predict optical flow, and infer actions.

H.3 REAL-WORLD FRANKA EMIKA PANDA ARM EXPERIMENTAL SETUP

This section describes the details of the real-world Franka Emika Panda arm experiments.

Hardware. Our arrangement comprises a Franka Emika Panda arm and an Intel Realsense D435
RGBD camera mounted at a fixed frame relative to the table. The robot arm is equipped with a
parallel motion two-jaw gripper, and the robot arm is in joint position control mode. Meanwhile, the
camera has calibrated intrinsic and extrinsic. Therefore, any object motion predicted in the camera
frame can be directly transformed into the world frame.

Dataset Collection. After training on the Bridge dataset, we fine-tuned the model with 20 human
demonstrations in a real-world tabletop manipulation setting. These videos are collected by humans
using their hands to move objects on the table and accomplish tasks. Our object set includes plates,
bowls, a few categories of fruits (apples, oranges, bananas, peaches, and mangoes), and utensils such
as forks and knives as distractors. The task is to pick up fruits from their initial locations and place
them in the specified container, a plate or a bowl.

Action Prediction and Execution. In our real-world evaluation, we assume that the target object can
be grasped using a top-grasp and that no re-orientation of the target object is needed. Therefore, in
order to compute the target object poses, we first manually specify the segmentation of the object
(in principle, it can be done using other object segmentation models, too), extract the corresponding
optical flow, and compute the sequence of the object poses. We extract its initial pose (in the first
frame) and the target pose (in the last frame), and generate a robot arm trajectory using an inverse-
kinematics (IK) solver. In practice, we found that since we are using only a small set of tracking
points (objects are small in our camera view), the reconstruction of 3D rotations is not robust. This
can be potentially addressed by leveraging a higher-resolution video generative model or simply,
different camera configurations.

Failure Mode Analysis In our real-world experiments, we found that our approach failed in 8 of the
10 tested trials. We found that 75% of the failures were caused by the wrong plan from the video
diffusion model. It either picked the wrong object or placed it at the wrong target. The other 25% of
the failures were caused by the discontinuity of video generation. The generated plan seems to be
correct, but the object disappeared in some intermediate frame, which eventually led to the failure.

20

21

	Introduction
	Related Work
	Actions from Video Dense Correspondences
	Text-Conditioned Video Generation
	Flow Prediction
	Action Regression from Flows and Depths

	Experiments
	Baselines and Variants of AVDC
	Meta-World
	iTHOR
	Cross-Embodiment Learning: From Human Videos to Robot Execution
	Real-World Franka Emika Panda Arm with Bridge Dataset

	Discussion
	References
	
	Code
	Extended Qualitative Results
	Zero-Shot Generalization on Real-World Scenes
	Extended Experiments
	Object mask with segmentation models
	BC with more data
	Object Mask as Proxy for Action
	Quality Analysis on Synthesized Videos

	Additional Ablation Studies
	First-Frame Conditioning
	Text Encoder
	Factorized Spatial-Temporal Convolution

	Model Architecture and Training Detail
	Text Encoder
	Video Diffusion Model

	Hardware and complexity analysis
	Training cost
	Inference cost
	Replanning cost
	Improving Inference Efficiency with Denoising Diffusion Implicit Models

	Details on Experimental Setup
	Meta-World Experimental Setup
	Learning the Diffusion Model
	Calculating Object Rigid Transformations and Inferring Actions
	Replanning Strategy
	Details of Baselines

	iTHOR Experimental Setup
	Learning the Diffusion Model
	Calculating Scene Transformations and Inferring Actions
	Replanning Strategy

	Real-World Franka Emika Panda Arm Experimental Setup

